quivr/main.py

86 lines
3.2 KiB
Python
Raw Normal View History

2023-05-13 00:58:19 +03:00
# main.py
2023-05-13 00:05:31 +03:00
import os
import tempfile
import streamlit as st
from files import file_uploader, url_uploader
2023-05-13 00:05:31 +03:00
from question import chat_with_doc
2023-05-13 02:12:51 +03:00
from brain import brain
2023-05-13 00:05:31 +03:00
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import SupabaseVectorStore
from supabase import Client, create_client
supabase_url = st.secrets.supabase_url
2023-05-13 00:22:21 +03:00
supabase_key = st.secrets.supabase_service_key
2023-05-13 00:05:31 +03:00
openai_api_key = st.secrets.openai_api_key
anthropic_api_key = st.secrets.anthropic_api_key
2023-05-13 00:05:31 +03:00
supabase: Client = create_client(supabase_url, supabase_key)
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
vector_store = SupabaseVectorStore(
supabase, embeddings, table_name="documents")
models = ["gpt-3.5-turbo", "gpt-4"]
if anthropic_api_key:
models += ["claude-v1", "claude-v1.3",
"claude-instant-v1-100k", "claude-instant-v1.1-100k"]
2023-05-13 00:05:31 +03:00
2023-05-13 00:58:19 +03:00
# Set the theme
st.set_page_config(
2023-05-14 22:46:31 +03:00
page_title="Quivr",
2023-05-13 00:58:19 +03:00
layout="wide",
initial_sidebar_state="expanded",
)
2023-05-13 00:05:31 +03:00
2023-05-14 22:46:31 +03:00
st.title("🧠 Quivr - Your second brain 🧠")
2023-05-13 00:05:31 +03:00
st.markdown("Store your knowledge in a vector store and query it with OpenAI's GPT-3/4.")
st.markdown("---\n\n")
2023-05-13 00:58:19 +03:00
# Initialize session state variables
if 'model' not in st.session_state:
st.session_state['model'] = "gpt-3.5-turbo"
if 'temperature' not in st.session_state:
st.session_state['temperature'] = 0.0
if 'chunk_size' not in st.session_state:
st.session_state['chunk_size'] = 500
if 'chunk_overlap' not in st.session_state:
st.session_state['chunk_overlap'] = 0
if 'max_tokens' not in st.session_state:
st.session_state['max_tokens'] = 256
2023-05-13 00:58:19 +03:00
# Create a radio button for user to choose between adding knowledge or asking a question
user_choice = st.radio(
"Choose an action", ('Add Knowledge', 'Chat with your Brain', 'Forget'))
2023-05-13 00:58:19 +03:00
2023-05-13 01:25:12 +03:00
st.markdown("---\n\n")
if user_choice == 'Add Knowledge':
2023-05-13 00:58:19 +03:00
# Display chunk size and overlap selection only when adding knowledge
st.sidebar.title("Configuration")
st.sidebar.markdown(
"Choose your chunk size and overlap for adding knowledge.")
st.session_state['chunk_size'] = st.sidebar.slider(
"Select Chunk Size", 100, 1000, st.session_state['chunk_size'], 50)
st.session_state['chunk_overlap'] = st.sidebar.slider(
"Select Chunk Overlap", 0, 100, st.session_state['chunk_overlap'], 10)
2023-05-13 00:58:19 +03:00
file_uploader(supabase, openai_api_key, vector_store)
url_uploader(supabase, openai_api_key, vector_store)
elif user_choice == 'Chat with your Brain':
2023-05-13 00:58:19 +03:00
# Display model and temperature selection only when asking questions
st.sidebar.title("Configuration")
st.sidebar.markdown(
"Choose your model and temperature for asking questions.")
st.session_state['model'] = st.sidebar.selectbox(
"Select Model", models, index=(models).index(st.session_state['model']))
st.session_state['temperature'] = st.sidebar.slider(
"Select Temperature", 0.0, 1.0, st.session_state['temperature'], 0.1)
st.session_state['max_tokens'] = st.sidebar.slider(
"Select Max Tokens", 256, 2048, st.session_state['max_tokens'], 2048)
chat_with_doc(st.session_state['model'], vector_store)
elif user_choice == 'Forget':
st.sidebar.title("Configuration")
brain(supabase)
2023-05-13 00:58:19 +03:00
st.markdown("---\n\n")