mirror of
https://github.com/StanGirard/quivr.git
synced 2024-11-27 18:32:55 +03:00
docs(updated): new scripts
This commit is contained in:
parent
4934f46121
commit
583e4d6378
@ -109,6 +109,10 @@ cp .frontend_env.example frontend/.env
|
||||
|
||||
[Migrations Script 4](scripts/supabase_users_table.sql)
|
||||
|
||||
[Migration Script 5](scripts/supabase_chats_table.sql)
|
||||
|
||||
[Migration Script 6](supabase/migrations/20230606131110_add_uuid_user_id.sql)
|
||||
|
||||
- **Step 5**: Launch the app
|
||||
|
||||
```bash
|
||||
|
@ -1,36 +0,0 @@
|
||||
create extension vector;
|
||||
|
||||
-- Create a table to store your documents
|
||||
create table if not exists documents (
|
||||
id bigserial primary key,
|
||||
content text, -- corresponds to Document.pageContent
|
||||
metadata jsonb, -- corresponds to Document.metadata
|
||||
embedding vector(1536) -- 1536 works for OpenAI embeddings, change if needed
|
||||
);
|
||||
|
||||
CREATE FUNCTION match_documents(query_embedding vector(1536), match_count int)
|
||||
RETURNS TABLE(
|
||||
id bigint,
|
||||
content text,
|
||||
metadata jsonb,
|
||||
-- we return matched vectors to enable maximal marginal relevance searches
|
||||
embedding vector(1536),
|
||||
similarity float)
|
||||
LANGUAGE plpgsql
|
||||
AS $$
|
||||
# variable_conflict use_column
|
||||
BEGIN
|
||||
RETURN query
|
||||
SELECT
|
||||
id,
|
||||
content,
|
||||
metadata,
|
||||
embedding,
|
||||
1 -(documents.embedding <=> query_embedding) AS similarity
|
||||
FROM
|
||||
documents
|
||||
ORDER BY
|
||||
documents.embedding <=> query_embedding
|
||||
LIMIT match_count;
|
||||
END;
|
||||
$$;
|
Loading…
Reference in New Issue
Block a user