mirror of
https://github.com/StanGirard/quivr.git
synced 2024-11-21 16:12:42 +03:00
chore: docs on quivr-core workflows (#3420)
# Description Added some initial documentation on RAG workflows, including also some nice Excalidraw diagrams Please include a summary of the changes and the related issue. Please also include relevant motivation and context. ## Checklist before requesting a review Please delete options that are not relevant. - [ ] My code follows the style guidelines of this project - [ ] I have performed a self-review of my code - [ ] I have commented hard-to-understand areas - [ ] I have ideally added tests that prove my fix is effective or that my feature works - [ ] New and existing unit tests pass locally with my changes - [ ] Any dependent changes have been merged ## Screenshots (if appropriate):
This commit is contained in:
parent
973c678369
commit
8c7277e9ec
@ -0,0 +1,46 @@
|
||||
# Configuration
|
||||
|
||||
The configuration classes are based on [Pydantic](https://docs.pydantic.dev/latest/) and allow the configuration of the ingestion and retrieval workflows via YAML files.
|
||||
|
||||
Below is an example of a YAML configuration file for a basic RAG retrieval workflow.
|
||||
```yaml
|
||||
workflow_config:
|
||||
name: "standard RAG"
|
||||
nodes:
|
||||
- name: "START"
|
||||
edges: ["filter_history"]
|
||||
|
||||
- name: "filter_history"
|
||||
edges: ["rewrite"]
|
||||
|
||||
- name: "rewrite"
|
||||
edges: ["retrieve"]
|
||||
|
||||
- name: "retrieve"
|
||||
edges: ["generate_rag"]
|
||||
|
||||
- name: "generate_rag" # the name of the last node, from which we want to stream the answer to the user, should always start with "generate"
|
||||
edges: ["END"]
|
||||
# Maximum number of previous conversation iterations
|
||||
# to include in the context of the answer
|
||||
max_history: 10
|
||||
|
||||
prompt: "my prompt"
|
||||
|
||||
max_files: 20
|
||||
reranker_config:
|
||||
# The reranker supplier to use
|
||||
supplier: "cohere"
|
||||
|
||||
# The model to use for the reranker for the given supplier
|
||||
model: "rerank-multilingual-v3.0"
|
||||
|
||||
# Number of chunks returned by the reranker
|
||||
top_n: 5
|
||||
llm_config:
|
||||
|
||||
max_context_tokens: 2000
|
||||
|
||||
temperature: 0.7
|
||||
streaming: true
|
||||
```
|
@ -3,7 +3,7 @@
|
||||
If you need to quickly start talking to your list of files, here are the steps.
|
||||
|
||||
1. Add your API Keys to your environment variables
|
||||
```python
|
||||
```python
|
||||
import os
|
||||
os.environ["OPENAI_API_KEY"] = "myopenai_apikey"
|
||||
|
||||
@ -11,51 +11,55 @@ os.environ["OPENAI_API_KEY"] = "myopenai_apikey"
|
||||
Check our `.env.example` file to see the possible environment variables you can configure. Quivr supports APIs from Anthropic, OpenAI, and Mistral. It also supports local models using Ollama.
|
||||
|
||||
2. Create a Brain with Quivr default configuration
|
||||
```python
|
||||
```python
|
||||
from quivr_core import Brain
|
||||
|
||||
brain = Brain.from_files(name = "my smart brain",
|
||||
brain = Brain.from_files(name = "my smart brain",
|
||||
file_paths = ["/my_smart_doc.pdf", "/my_intelligent_doc.txt"],
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
3. Launch a Chat
|
||||
```python
|
||||
brain.print_info()
|
||||
```python
|
||||
brain.print_info()
|
||||
|
||||
console = Console()
|
||||
console.print(Panel.fit("Ask your brain !", style="bold magenta"))
|
||||
from rich.console import Console
|
||||
from rich.panel import Panel
|
||||
from rich.prompt import Prompt
|
||||
|
||||
while True:
|
||||
# Get user input
|
||||
question = Prompt.ask("[bold cyan]Question[/bold cyan]")
|
||||
console = Console()
|
||||
console.print(Panel.fit("Ask your brain !", style="bold magenta"))
|
||||
|
||||
# Check if user wants to exit
|
||||
if question.lower() == "exit":
|
||||
console.print(Panel("Goodbye!", style="bold yellow"))
|
||||
break
|
||||
while True:
|
||||
# Get user input
|
||||
question = Prompt.ask("[bold cyan]Question[/bold cyan]")
|
||||
|
||||
answer = brain.ask(question)
|
||||
# Print the answer with typing effect
|
||||
console.print(f"[bold green]Quivr Assistant[/bold green]: {answer.answer}")
|
||||
# Check if user wants to exit
|
||||
if question.lower() == "exit":
|
||||
console.print(Panel("Goodbye!", style="bold yellow"))
|
||||
break
|
||||
|
||||
console.print("-" * console.width)
|
||||
answer = brain.ask(question)
|
||||
# Print the answer with typing effect
|
||||
console.print(f"[bold green]Quivr Assistant[/bold green]: {answer.answer}")
|
||||
|
||||
brain.print_info()
|
||||
console.print("-" * console.width)
|
||||
|
||||
brain.print_info()
|
||||
```
|
||||
|
||||
And now you are all set up to talk with your brain !
|
||||
And now you are all set up to talk with your brain !
|
||||
|
||||
## Custom Brain
|
||||
If you want to change the language or embeddings model, you can modify the parameters of the brain.
|
||||
|
||||
Let's say you want to use Mistral llm and a specific embedding model :
|
||||
```python
|
||||
Let's say you want to use a LLM from Mistral and a specific embedding model :
|
||||
```python
|
||||
from quivr_core import Brain
|
||||
from langchain_core.embeddings import Embeddings
|
||||
|
||||
brain = Brain.from_files(name = "my smart brain",
|
||||
brain = Brain.from_files(name = "my smart brain",
|
||||
file_paths = ["/my_smart_doc.pdf", "/my_intelligent_doc.txt"],
|
||||
llm=LLMEndpoint(
|
||||
llm_config=LLMEndpointConfig(model="mistral-small-latest", llm_base_url="https://api.mistral.ai/v1/chat/completions"),
|
||||
@ -68,12 +72,12 @@ Note : [Embeddings](https://python.langchain.com/docs/integrations/text_embeddin
|
||||
|
||||
## Launch with Chainlit
|
||||
|
||||
If you want to quickly launch an interface with Chainlit, you can simply do at the root of the project :
|
||||
```bash
|
||||
If you want to quickly launch an interface with streamlit, you can simply do at the root of the project :
|
||||
```bash
|
||||
cd examples/chatbot /
|
||||
rye sync /
|
||||
rye run chainlit run chainlit.py
|
||||
```
|
||||
For more detail, go in [examples/chatbot/chainlit.md](https://github.com/QuivrHQ/quivr/tree/main/examples/chatbot)
|
||||
|
||||
Note : Modify the Brain configs directly in examples/chatbot/main.py;
|
||||
Note : Modify the Brain configs directly in examples/chatbot/main.py;
|
||||
|
BIN
docs/docs/workflows/examples/basic_ingestion.excalidraw.png
Normal file
BIN
docs/docs/workflows/examples/basic_ingestion.excalidraw.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 134 KiB |
77
docs/docs/workflows/examples/basic_ingestion.md
Normal file
77
docs/docs/workflows/examples/basic_ingestion.md
Normal file
@ -0,0 +1,77 @@
|
||||
# Basic ingestion
|
||||
|
||||
![](basic_ingestion.excalidraw.png)
|
||||
|
||||
|
||||
Creating a basic ingestion workflow like the one above is simple, here are the steps:
|
||||
|
||||
1. Add your API Keys to your environment variables
|
||||
```python
|
||||
import os
|
||||
os.environ["OPENAI_API_KEY"] = "myopenai_apikey"
|
||||
|
||||
```
|
||||
Check our `.env.example` file to see the possible environment variables you can configure. Quivr supports APIs from Anthropic, OpenAI, and Mistral. It also supports local models using Ollama.
|
||||
|
||||
2. Create the YAML file ``basic_ingestion_workflow.yaml`` and copy the following content in it
|
||||
```yaml
|
||||
parser_config:
|
||||
megaparse_config:
|
||||
strategy: "auto" # for unstructured, it can be "auto", "fast", "hi_res", "ocr_only", see https://docs.unstructured.io/open-source/concepts/partitioning-strategies#partitioning-strategies
|
||||
pdf_parser: "unstructured"
|
||||
splitter_config:
|
||||
chunk_size: 400 # in tokens
|
||||
chunk_overlap: 100 # in tokens
|
||||
```
|
||||
|
||||
3. Create a Brain using the above configuration and the list of files you want to ingest
|
||||
```python
|
||||
from quivr_core import Brain
|
||||
from quivr_core.config import IngestionConfig
|
||||
|
||||
config_file_name = "./basic_ingestion_workflow.yaml"
|
||||
|
||||
ingestion_config = IngestionConfig.from_yaml(config_file_name)
|
||||
|
||||
processor_kwargs = {
|
||||
"megaparse_config": ingestion_config.parser_config.megaparse_config,
|
||||
"splitter_config": ingestion_config.parser_config.splitter_config,
|
||||
}
|
||||
|
||||
brain = Brain.from_files(name = "my smart brain",
|
||||
file_paths = ["./my_first_doc.pdf", "./my_second_doc.txt"],
|
||||
processor_kwargs=processor_kwargs,
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
4. Launch a Chat
|
||||
```python
|
||||
brain.print_info()
|
||||
|
||||
from rich.console import Console
|
||||
from rich.panel import Panel
|
||||
from rich.prompt import Prompt
|
||||
|
||||
console = Console()
|
||||
console.print(Panel.fit("Ask your brain !", style="bold magenta"))
|
||||
|
||||
while True:
|
||||
# Get user input
|
||||
question = Prompt.ask("[bold cyan]Question[/bold cyan]")
|
||||
|
||||
# Check if user wants to exit
|
||||
if question.lower() == "exit":
|
||||
console.print(Panel("Goodbye!", style="bold yellow"))
|
||||
break
|
||||
|
||||
answer = brain.ask(question)
|
||||
# Print the answer with typing effect
|
||||
console.print(f"[bold green]Quivr Assistant[/bold green]: {answer.answer}")
|
||||
|
||||
console.print("-" * console.width)
|
||||
|
||||
brain.print_info()
|
||||
```
|
||||
|
||||
5. You are now all set up to talk with your brain and test different chunking strategies by simply changing the configuration file!
|
BIN
docs/docs/workflows/examples/basic_rag.excalidraw.png
Normal file
BIN
docs/docs/workflows/examples/basic_rag.excalidraw.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 191 KiB |
106
docs/docs/workflows/examples/basic_rag.md
Normal file
106
docs/docs/workflows/examples/basic_rag.md
Normal file
@ -0,0 +1,106 @@
|
||||
# Basic RAG
|
||||
|
||||
![](basic_rag.excalidraw.png)
|
||||
|
||||
|
||||
Creating a basic RAG workflow like the one above is simple, here are the steps:
|
||||
|
||||
|
||||
1. Add your API Keys to your environment variables
|
||||
```python
|
||||
import os
|
||||
os.environ["OPENAI_API_KEY"] = "myopenai_apikey"
|
||||
|
||||
```
|
||||
Check our `.env.example` file to see the possible environment variables you can configure. Quivr supports APIs from Anthropic, OpenAI, and Mistral. It also supports local models using Ollama.
|
||||
|
||||
2. Create the YAML file ``basic_rag_workflow.yaml`` and copy the following content in it
|
||||
```yaml
|
||||
workflow_config:
|
||||
name: "standard RAG"
|
||||
nodes:
|
||||
- name: "START"
|
||||
edges: ["filter_history"]
|
||||
|
||||
- name: "filter_history"
|
||||
edges: ["rewrite"]
|
||||
|
||||
- name: "rewrite"
|
||||
edges: ["retrieve"]
|
||||
|
||||
- name: "retrieve"
|
||||
edges: ["generate_rag"]
|
||||
|
||||
- name: "generate_rag" # the name of the last node, from which we want to stream the answer to the user
|
||||
edges: ["END"]
|
||||
|
||||
# Maximum number of previous conversation iterations
|
||||
# to include in the context of the answer
|
||||
max_history: 10
|
||||
|
||||
# Reranker configuration
|
||||
reranker_config:
|
||||
# The reranker supplier to use
|
||||
supplier: "cohere"
|
||||
|
||||
# The model to use for the reranker for the given supplier
|
||||
model: "rerank-multilingual-v3.0"
|
||||
|
||||
# Number of chunks returned by the reranker
|
||||
top_n: 5
|
||||
|
||||
# Configuration for the LLM
|
||||
llm_config:
|
||||
|
||||
# maximum number of tokens passed to the LLM to generate the answer
|
||||
max_input_tokens: 4000
|
||||
|
||||
# temperature for the LLM
|
||||
temperature: 0.7
|
||||
```
|
||||
|
||||
3. Create a Brain with the default configuration
|
||||
```python
|
||||
from quivr_core import Brain
|
||||
|
||||
brain = Brain.from_files(name = "my smart brain",
|
||||
file_paths = ["./my_first_doc.pdf", "./my_second_doc.txt"],
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
4. Launch a Chat
|
||||
```python
|
||||
brain.print_info()
|
||||
|
||||
from rich.console import Console
|
||||
from rich.panel import Panel
|
||||
from rich.prompt import Prompt
|
||||
from quivr_core.config import RetrievalConfig
|
||||
|
||||
config_file_name = "./basic_rag_workflow.yaml"
|
||||
|
||||
retrieval_config = RetrievalConfig.from_yaml(config_file_name)
|
||||
|
||||
console = Console()
|
||||
console.print(Panel.fit("Ask your brain !", style="bold magenta"))
|
||||
|
||||
while True:
|
||||
# Get user input
|
||||
question = Prompt.ask("[bold cyan]Question[/bold cyan]")
|
||||
|
||||
# Check if user wants to exit
|
||||
if question.lower() == "exit":
|
||||
console.print(Panel("Goodbye!", style="bold yellow"))
|
||||
break
|
||||
|
||||
answer = brain.ask(question, retrieval_config=retrieval_config)
|
||||
# Print the answer with typing effect
|
||||
console.print(f"[bold green]Quivr Assistant[/bold green]: {answer.answer}")
|
||||
|
||||
console.print("-" * console.width)
|
||||
|
||||
brain.print_info()
|
||||
```
|
||||
|
||||
5. You are now all set up to talk with your brain and test different retrieval strategies by simply changing the configuration file!
|
@ -1,88 +0,0 @@
|
||||
# Chat
|
||||
|
||||
Creating a custom brain workflow is simple, here are the steps :
|
||||
|
||||
1. Create a workflow
|
||||
2. Create a Brain with this workflow and append your files
|
||||
3. Launch a chat
|
||||
4. Chat with your brain !
|
||||
|
||||
### Use AssistantConfig
|
||||
|
||||
First create a json configuration file in the rag_config_workflow.yaml format (see workflows):
|
||||
```yaml
|
||||
ingestion_config:
|
||||
parser_config:
|
||||
megaparse_config:
|
||||
strategy: "fast"
|
||||
pdf_parser: "unstructured"
|
||||
splitter_config:
|
||||
chunk_size: 400
|
||||
chunk_overlap: 100
|
||||
|
||||
retrieval_config:
|
||||
workflow_config:
|
||||
name: "standard RAG"
|
||||
nodes:
|
||||
- name: "START"
|
||||
edges: ["filter_history"]
|
||||
|
||||
- name: "filter_history"
|
||||
edges: ["generate_chat_llm"]
|
||||
|
||||
- name: "generate_chat_llm" # the name of the last node, from which we want to stream the answer to the user, should always start with "generate"
|
||||
edges: ["END"]
|
||||
# Maximum number of previous conversation iterations
|
||||
# to include in the context of the answer
|
||||
max_history: 10
|
||||
|
||||
#prompt: "my prompt"
|
||||
|
||||
max_files: 20
|
||||
reranker_config:
|
||||
# The reranker supplier to use
|
||||
supplier: "cohere"
|
||||
|
||||
# The model to use for the reranker for the given supplier
|
||||
model: "rerank-multilingual-v3.0"
|
||||
|
||||
# Number of chunks returned by the reranker
|
||||
top_n: 5
|
||||
llm_config:
|
||||
# The LLM supplier to use
|
||||
supplier: "openai"
|
||||
|
||||
# The model to use for the LLM for the given supplier
|
||||
model: "gpt-3.5-turbo-0125"
|
||||
|
||||
max_input_tokens: 2000
|
||||
|
||||
# Maximum number of tokens to pass to the LLM
|
||||
# as a context to generate the answer
|
||||
max_output_tokens: 2000
|
||||
|
||||
temperature: 0.7
|
||||
streaming: true
|
||||
|
||||
```
|
||||
This brain is set up to :
|
||||
* Filter history and keep only the latest conversations
|
||||
* Ask the question to the brain
|
||||
* Generate answer
|
||||
|
||||
|
||||
Then, when instanciating your Brain, add the custom config you created:
|
||||
|
||||
```python
|
||||
assistant_config = AssistantConfig.from_yaml("my_config_file.yaml")
|
||||
processor_kwargs = {
|
||||
"assistant_config": assistant_config
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1 +0,0 @@
|
||||
# RAG with Internet
|
BIN
docs/docs/workflows/examples/rag_with_web_search.excalidraw.png
Normal file
BIN
docs/docs/workflows/examples/rag_with_web_search.excalidraw.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 236 KiB |
135
docs/docs/workflows/examples/rag_with_web_search.md
Normal file
135
docs/docs/workflows/examples/rag_with_web_search.md
Normal file
@ -0,0 +1,135 @@
|
||||
# RAG with web search
|
||||
|
||||
|
||||
![](rag_with_web_search.excalidraw.png)
|
||||
|
||||
Follow the instructions below to create the agentic RAG workflow shown above, which includes some advanced capabilities such as:
|
||||
|
||||
* **user intention detection** - the agent can detect if the user wants to activate the web search tool to look for information not present in the documents;
|
||||
* **dynamic chunk retrieval** - the number of retrieved chunks is not fixed, but determined dynamically using the reranker's relevance scores and the user-provided ``relevance_score_threshold``;
|
||||
* **web search** - the agent can search the web for more information if needed.
|
||||
|
||||
|
||||
---
|
||||
|
||||
1. Add your API Keys to your environment variables
|
||||
```python
|
||||
import os
|
||||
os.environ["OPENAI_API_KEY"] = "myopenai_apikey"
|
||||
|
||||
```
|
||||
Check our `.env.example` file to see the possible environment variables you can configure. Quivr supports APIs from Anthropic, OpenAI, and Mistral. It also supports local models using Ollama.
|
||||
|
||||
2. Create the YAML file ``rag_with_web_search_workflow.yaml`` and copy the following content in it
|
||||
```yaml
|
||||
workflow_config:
|
||||
name: "RAG with web search"
|
||||
|
||||
# List of tools that the agent can activate if the user instructions require it
|
||||
available_tools:
|
||||
- "web search"
|
||||
|
||||
nodes:
|
||||
- name: "START"
|
||||
conditional_edge:
|
||||
routing_function: "routing_split"
|
||||
conditions: ["edit_system_prompt", "filter_history"]
|
||||
|
||||
- name: "edit_system_prompt"
|
||||
edges: ["filter_history"]
|
||||
|
||||
- name: "filter_history"
|
||||
edges: ["dynamic_retrieve"]
|
||||
|
||||
- name: "dynamic_retrieve"
|
||||
conditional_edge:
|
||||
routing_function: "tool_routing"
|
||||
conditions: ["run_tool", "generate_rag"]
|
||||
|
||||
- name: "run_tool"
|
||||
edges: ["generate_rag"]
|
||||
|
||||
- name: "generate_rag" # the name of the last node, from which we want to stream the answer to the user
|
||||
edges: ["END"]
|
||||
tools:
|
||||
- name: "cited_answer"
|
||||
|
||||
# Maximum number of previous conversation iterations
|
||||
# to include in the context of the answer
|
||||
max_history: 10
|
||||
|
||||
# Number of chunks returned by the retriever
|
||||
k: 40
|
||||
|
||||
# Reranker configuration
|
||||
reranker_config:
|
||||
# The reranker supplier to use
|
||||
supplier: "cohere"
|
||||
|
||||
# The model to use for the reranker for the given supplier
|
||||
model: "rerank-multilingual-v3.0"
|
||||
|
||||
# Number of chunks returned by the reranker
|
||||
top_n: 5
|
||||
|
||||
# Among the chunks returned by the reranker, only those with relevance
|
||||
# scores equal or above the relevance_score_threshold will be returned
|
||||
# to the LLM to generate the answer (allowed values are between 0 and 1,
|
||||
# a value of 0.1 works well with the cohere and jina rerankers)
|
||||
relevance_score_threshold: 0.01
|
||||
|
||||
# LLM configuration
|
||||
llm_config:
|
||||
|
||||
# maximum number of tokens passed to the LLM to generate the answer
|
||||
max_input_tokens: 8000
|
||||
|
||||
# temperature for the LLM
|
||||
temperature: 0.7
|
||||
```
|
||||
|
||||
3. Create a Brain with the default configuration
|
||||
```python
|
||||
from quivr_core import Brain
|
||||
|
||||
brain = Brain.from_files(name = "my smart brain",
|
||||
file_paths = ["./my_first_doc.pdf", "./my_second_doc.txt"],
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
4. Launch a Chat
|
||||
```python
|
||||
brain.print_info()
|
||||
|
||||
from rich.console import Console
|
||||
from rich.panel import Panel
|
||||
from rich.prompt import Prompt
|
||||
from quivr_core.config import RetrievalConfig
|
||||
|
||||
config_file_name = "./rag_with_web_search_workflow.yaml"
|
||||
|
||||
retrieval_config = RetrievalConfig.from_yaml(config_file_name)
|
||||
|
||||
console = Console()
|
||||
console.print(Panel.fit("Ask your brain !", style="bold magenta"))
|
||||
|
||||
while True:
|
||||
# Get user input
|
||||
question = Prompt.ask("[bold cyan]Question[/bold cyan]")
|
||||
|
||||
# Check if user wants to exit
|
||||
if question.lower() == "exit":
|
||||
console.print(Panel("Goodbye!", style="bold yellow"))
|
||||
break
|
||||
|
||||
answer = brain.ask(question, retrieval_config=retrieval_config)
|
||||
# Print the answer with typing effect
|
||||
console.print(f"[bold green]Quivr Assistant[/bold green]: {answer.answer}")
|
||||
|
||||
console.print("-" * console.width)
|
||||
|
||||
brain.print_info()
|
||||
```
|
||||
|
||||
5. You are now all set up to talk with your brain and test different retrieval strategies by simply changing the configuration file!
|
@ -1 +1,3 @@
|
||||
# Configuration
|
||||
# Workflows
|
||||
|
||||
In this section, you will find examples of workflows that you can use to create your own agentic RAG systems.
|
||||
|
@ -79,10 +79,14 @@ nav:
|
||||
- Workflows:
|
||||
- workflows/index.md
|
||||
- Examples:
|
||||
- workflows/examples/chat.md
|
||||
- workflows/examples/rag_with_internet.md
|
||||
- workflows/examples/basic_ingestion.md
|
||||
- workflows/examples/basic_rag.md
|
||||
- workflows/examples/rag_with_web_search.md
|
||||
- Configuration:
|
||||
- config/index.md
|
||||
- config/base_config.md
|
||||
- config/config.md
|
||||
- config/base_config.md
|
||||
- Examples:
|
||||
- examples/index.md
|
||||
- examples/custom_storage.md
|
||||
- Enterprise: https://docs.quivr.app/
|
||||
|
@ -25,6 +25,8 @@ anthropic==0.36.1
|
||||
anyio==4.6.2.post1
|
||||
# via anthropic
|
||||
# via httpx
|
||||
appnope==0.1.4
|
||||
# via ipykernel
|
||||
asttokens==2.4.1
|
||||
# via stack-data
|
||||
attrs==24.2.0
|
||||
@ -76,8 +78,6 @@ fsspec==2024.9.0
|
||||
# via huggingface-hub
|
||||
ghp-import==2.1.0
|
||||
# via mkdocs
|
||||
greenlet==3.1.1
|
||||
# via sqlalchemy
|
||||
griffe==1.2.0
|
||||
# via mkdocstrings-python
|
||||
h11==0.14.0
|
||||
|
@ -25,6 +25,8 @@ anthropic==0.36.1
|
||||
anyio==4.6.2.post1
|
||||
# via anthropic
|
||||
# via httpx
|
||||
appnope==0.1.4
|
||||
# via ipykernel
|
||||
asttokens==2.4.1
|
||||
# via stack-data
|
||||
attrs==24.2.0
|
||||
@ -76,8 +78,6 @@ fsspec==2024.9.0
|
||||
# via huggingface-hub
|
||||
ghp-import==2.1.0
|
||||
# via mkdocs
|
||||
greenlet==3.1.1
|
||||
# via sqlalchemy
|
||||
griffe==1.2.0
|
||||
# via mkdocstrings-python
|
||||
h11==0.14.0
|
||||
|
Loading…
Reference in New Issue
Block a user