Delete diff.txt

This commit is contained in:
shaun 2023-05-14 01:28:55 -07:00 committed by GitHub
parent 92ac5e8dfc
commit b8fc269446
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

163
diff.txt
View File

@ -1,163 +0,0 @@
diff --git a/.streamlit/secrets.toml.example b/.streamlit/secrets.toml.example
index 093c5bf..4c405dc 100644
--- a/.streamlit/secrets.toml.example
+++ b/.streamlit/secrets.toml.example
@@ -1,3 +1,4 @@
supabase_url = "https://lalalala.supabase.co"
supabase_service_key = "lalalala"
-openai_api_key = "sk-lalalala"
\ No newline at end of file
+openai_api_key = "sk-lalalala"
+anthropic_api_key = ""
diff --git a/main.py b/main.py
index 6ed2560..88af1c5 100644
--- a/main.py
+++ b/main.py
@@ -10,25 +10,30 @@ from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import SupabaseVectorStore
from supabase import Client, create_client
-# supabase_url = "https://fqgpcifsfmamprzldyiv.supabase.co"
supabase_url = st.secrets.supabase_url
supabase_key = st.secrets.supabase_service_key
openai_api_key = st.secrets.openai_api_key
+anthropic_api_key = st.secrets.anthropic_api_key
supabase: Client = create_client(supabase_url, supabase_key)
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
-vector_store = SupabaseVectorStore(supabase, embeddings, table_name="documents")
+vector_store = SupabaseVectorStore(
+ supabase, embeddings, table_name="documents")
+models = ["gpt-3.5-turbo", "gpt-4"]
+if anthropic_api_key:
+ models += ["claude-v1", "claude-v1.3",
+ "claude-instant-v1-100k", "claude-instant-v1.1-100k"]
# Set the theme
st.set_page_config(
page_title="Second Brain",
layout="wide",
initial_sidebar_state="expanded",
-
)
st.title("🧠 Second Brain 🧠")
-st.markdown("Store your knowledge in a vector store and query it with OpenAI's GPT-3/4.")
+st.markdown(
+ "Store your knowledge in a vector store and query it with OpenAI's GPT-3/4.")
st.markdown("---\n\n")
# Initialize session state variables
@@ -40,31 +45,40 @@ if 'chunk_size' not in st.session_state:
st.session_state['chunk_size'] = 500
if 'chunk_overlap' not in st.session_state:
st.session_state['chunk_overlap'] = 0
+if 'max_tokens' not in st.session_state:
+ st.session_state['max_tokens'] = 256
# Create a radio button for user to choose between adding knowledge or asking a question
-user_choice = st.radio("Choose an action", ('Add Knowledge', 'Chat with your Brain','Forget' ))
+user_choice = st.radio(
+ "Choose an action", ('Add Knowledge', 'Chat with your Brain', 'Forget'))
st.markdown("---\n\n")
-
-
if user_choice == 'Add Knowledge':
# Display chunk size and overlap selection only when adding knowledge
- st.sidebar.title("Configuration")
- st.sidebar.markdown("Choose your chunk size and overlap for adding knowledge.")
- st.session_state['chunk_size'] = st.sidebar.slider("Select Chunk Size", 100, 1000, st.session_state['chunk_size'], 50)
- st.session_state['chunk_overlap'] = st.sidebar.slider("Select Chunk Overlap", 0, 100, st.session_state['chunk_overlap'], 10)
+ st.sidebar.title("Configuration")
+ st.sidebar.markdown(
+ "Choose your chunk size and overlap for adding knowledge.")
+ st.session_state['chunk_size'] = st.sidebar.slider(
+ "Select Chunk Size", 100, 1000, st.session_state['chunk_size'], 50)
+ st.session_state['chunk_overlap'] = st.sidebar.slider(
+ "Select Chunk Overlap", 0, 100, st.session_state['chunk_overlap'], 10)
file_uploader(supabase, openai_api_key, vector_store)
elif user_choice == 'Chat with your Brain':
# Display model and temperature selection only when asking questions
- st.sidebar.title("Configuration")
- st.sidebar.markdown("Choose your model and temperature for asking questions.")
- st.session_state['model'] = st.sidebar.selectbox("Select Model", ["gpt-3.5-turbo", "gpt-4"], index=("gpt-3.5-turbo", "gpt-4").index(st.session_state['model']))
- st.session_state['temperature'] = st.sidebar.slider("Select Temperature", 0.0, 1.0, st.session_state['temperature'], 0.1)
- chat_with_doc(openai_api_key, vector_store)
+ st.sidebar.title("Configuration")
+ st.sidebar.markdown(
+ "Choose your model and temperature for asking questions.")
+ st.session_state['model'] = st.sidebar.selectbox(
+ "Select Model", models, index=(models).index(st.session_state['model']))
+ st.session_state['temperature'] = st.sidebar.slider(
+ "Select Temperature", 0.0, 1.0, st.session_state['temperature'], 0.1)
+ st.session_state['max_tokens'] = st.sidebar.slider(
+ "Select Max Tokens", 256, 2048, st.session_state['max_tokens'], 2048)
+ chat_with_doc(st.session_state['model'], vector_store)
elif user_choice == 'Forget':
st.sidebar.title("Configuration")
-
+
brain(supabase)
-st.markdown("---\n\n")
\ No newline at end of file
+st.markdown("---\n\n")
diff --git a/question.py b/question.py
index 8e875f6..6f8e9d3 100644
--- a/question.py
+++ b/question.py
@@ -1,14 +1,35 @@
import streamlit as st
+from streamlit.logger import get_logger
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import OpenAI
+from langchain.chat_models import ChatAnthropic
+from langchain.vectorstores import SupabaseVectorStore
-memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
+memory = ConversationBufferMemory(
+ memory_key="chat_history", return_messages=True)
+openai_api_key = st.secrets.openai_api_key
+anthropic_api_key = st.secrets.anthropic_api_key
+logger = get_logger(__name__)
-def chat_with_doc(openai_api_key, vector_store):
- question = st.text_input("## Ask a question")
+
+def chat_with_doc(model, vector_store: SupabaseVectorStore):
+ question = st.text_area("## Ask a question")
button = st.button("Ask")
if button:
- qa = ConversationalRetrievalChain.from_llm(OpenAI(model_name=st.session_state['model'], openai_api_key=openai_api_key, temperature=st.session_state['temperature']), vector_store.as_retriever(), memory=memory)
- result = qa({"question": question})
- st.write(result["answer"])
\ No newline at end of file
+ if model.startswith("gpt"):
+ logger.info('Using OpenAI model %s', model)
+ qa = ConversationalRetrievalChain.from_llm(
+ OpenAI(
+ model_name=st.session_state['model'], openai_api_key=openai_api_key, temperature=st.session_state['temperature'], max_tokens=st.session_state['max_tokens']), vector_store.as_retriever(), memory=memory, verbose=True)
+ result = qa({"question": question})
+ logger.info('Result: %s', result)
+ st.write(result["answer"])
+ elif anthropic_api_key and model.startswith("claude"):
+ logger.info('Using Anthropics model %s', model)
+ qa = ConversationalRetrievalChain.from_llm(
+ ChatAnthropic(
+ model=st.session_state['model'], anthropic_api_key=anthropic_api_key, temperature=st.session_state['temperature'], max_tokens_to_sample=st.session_state['max_tokens']), vector_store.as_retriever(), memory=memory, verbose=True, max_tokens_limit=102400)
+ result = qa({"question": question})
+ logger.info('Result: %s', result)
+ st.write(result["answer"])
diff --git a/requirements.txt b/requirements.txt
index 981d00b..ea8f1f6 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -8,4 +8,4 @@ StrEnum==0.4.10
supabase==1.0.3
tiktoken==0.4.0
unstructured==0.6.5
-
+anthropic=0.2.8