feat(brainpicking): new class

This commit is contained in:
Stan Girard 2023-06-19 20:51:13 +02:00
parent 17aaf18d61
commit d42f14f431
2 changed files with 40 additions and 56 deletions

View File

@ -17,77 +17,59 @@ from langchain.vectorstores import SupabaseVectorStore
from llm.prompt import LANGUAGE_PROMPT
from llm.prompt.CONDENSE_PROMPT import CONDENSE_QUESTION_PROMPT
from models.chats import ChatMessage
from pydantic import BaseModel, BaseSettings
from supabase import Client, create_client
from vectorstore.supabase import CustomSupabaseVectorStore
class BrainSettings(BaseSettings):
openai_api_key: str
anthropic_api_key: str
supabase_url: str
supabase_service_key: str
class AnswerConversationBufferMemory(ConversationBufferMemory):
"""ref https://github.com/hwchase17/langchain/issues/5630#issuecomment-1574222564"""
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
return super(AnswerConversationBufferMemory, self).save_context(
inputs, {'response': outputs['answer']})
def get_environment_variables():
'''Get the environment variables.'''
openai_api_key = os.getenv("OPENAI_API_KEY")
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
supabase_url = os.getenv("SUPABASE_URL")
supabase_key = os.getenv("SUPABASE_SERVICE_KEY")
return openai_api_key, anthropic_api_key, supabase_url, supabase_key
def create_clients_and_embeddings(openai_api_key, supabase_url, supabase_key):
'''Create the clients and embeddings.'''
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
supabase_client = create_client(supabase_url, supabase_key)
return supabase_client, embeddings
def get_chat_history(inputs) -> str:
res = []
for human, ai in inputs:
res.append(f"{human}:{ai}\n")
return "\n".join(res)
def get_qa_llm(chat_message: ChatMessage, user_id: str, user_openai_api_key: str, with_sources: bool = False):
'''Get the question answering language model.'''
openai_api_key, anthropic_api_key, supabase_url, supabase_key = get_environment_variables()
'''User can override the openai_api_key'''
if user_openai_api_key is not None and user_openai_api_key != "":
openai_api_key = user_openai_api_key
supabase_client, embeddings = create_clients_and_embeddings(openai_api_key, supabase_url, supabase_key)
class BrainPicking(BaseModel):
""" Class that allows the user to pick a brain. """
llm_name: str = "gpt-3.5-turbo"
settings = BrainSettings()
embeddings: OpenAIEmbeddings = None
supabase_client: Client = None
vector_store: CustomSupabaseVectorStore = None
llm: ChatOpenAI = None
question_generator: LLMChain = None
doc_chain: ConversationalRetrievalChain = None
vector_store = CustomSupabaseVectorStore(
supabase_client, embeddings, table_name="vectors", user_id=user_id)
class Config:
arbitrary_types_allowed = True
def init(self, model: str, user_id: str) -> "BrainPicking":
self.embeddings = OpenAIEmbeddings(openai_api_key=self.settings.openai_api_key)
self.supabase_client = create_client(self.settings.supabase_url, self.settings.supabase_service_key)
self.vector_store = CustomSupabaseVectorStore(
self.supabase_client, self.embeddings, table_name="vectors", user_id=user_id)
self.llm = ChatOpenAI(temperature=0, model_name=model)
self.question_generator = LLMChain(llm=self.llm, prompt=CONDENSE_QUESTION_PROMPT)
self.doc_chain = load_qa_chain(self.llm, chain_type="stuff")
return self
qa = None
if chat_message.model.startswith("gpt"):
llm = ChatOpenAI(temperature=0, model_name=chat_message.model)
question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
doc_chain = load_qa_chain(llm, chain_type="stuff")
def get_qa(self, chat_message: ChatMessage, user_openai_api_key) -> ConversationalRetrievalChain:
if user_openai_api_key is not None and user_openai_api_key != "":
self.settings.openai_api_key = user_openai_api_key
qa = ConversationalRetrievalChain(
retriever=vector_store.as_retriever(),
max_tokens_limit=chat_message.max_tokens, question_generator=question_generator,
combine_docs_chain=doc_chain, get_chat_history=get_chat_history)
elif chat_message.model.startswith("vertex"):
qa = ConversationalRetrievalChain.from_llm(
ChatVertexAI(), vector_store.as_retriever(), verbose=True,
return_source_documents=with_sources, max_tokens_limit=1024,question_generator=question_generator,
combine_docs_chain=doc_chain)
elif anthropic_api_key and chat_message.model.startswith("claude"):
qa = ConversationalRetrievalChain.from_llm(
ChatAnthropic(
model=chat_message.model, anthropic_api_key=anthropic_api_key, temperature=chat_message.temperature, max_tokens_to_sample=chat_message.max_tokens),
vector_store.as_retriever(), verbose=False,
return_source_documents=with_sources,
max_tokens_limit=102400)
qa.combine_docs_chain = load_qa_chain(ChatAnthropic(), chain_type="stuff", prompt=LANGUAGE_PROMPT.QA_PROMPT)
return qa
retriever=self.vector_store.as_retriever(),
max_tokens_limit=chat_message.max_tokens, question_generator=self.question_generator,
combine_docs_chain=self.doc_chain, get_chat_history=get_chat_history)
return qa

View File

@ -1,6 +1,6 @@
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.schema import Document
from llm.qa import get_qa_llm
from llm.qa import BrainPicking
from llm.summarization import llm_evaluate_summaries, llm_summerize
from logger import get_logger
from models.chats import ChatMessage
@ -49,7 +49,9 @@ def similarity_search(commons: CommonsDep, query, table='match_summaries', top_k
return summaries.data
def get_answer(commons: CommonsDep, chat_message: ChatMessage, email: str, user_openai_api_key:str):
qa = get_qa_llm(chat_message, email, user_openai_api_key)
Brain = BrainPicking().init(chat_message.model, email)
qa = Brain.get_qa(chat_message, user_openai_api_key)
if chat_message.use_summarization:
# 1. get summaries from the vector store based on question