import streamlit as st import os from loaders.audio import process_audio from loaders.txt import process_txt from loaders.csv import process_csv from loaders.markdown import process_markdown from utils import compute_sha1_from_content from loaders.pdf import process_pdf def file_uploader(supabase, openai_key, vector_store): file_processors = { ".txt": process_txt, ".csv": process_csv, ".md": process_markdown, ".markdown": process_markdown, ".m4a": process_audio, ".mp3": process_audio, ".webm": process_audio, ".mp4": process_audio, ".mpga": process_audio, ".wav": process_audio, ".mpeg": process_audio, ".pdf": process_pdf, } files = st.file_uploader("Upload a file", accept_multiple_files=True, type=list(file_processors.keys())) if st.button("Add to Database"): if files is not None: for file in files: if file_already_exists(supabase, file): st.write(f"😎 {file.name} is already in the database.") elif file.size < 1: st.write(f"💨 {file.name} is empty.") else: file_extension = os.path.splitext(file.name)[-1] if file_extension in file_processors: file_processors[file_extension](vector_store, file) st.write(f"✅ {file.name} ") else: st.write(f"❌ {file.name} is not a valid file type.") def file_already_exists(supabase, file): file_sha1 = compute_sha1_from_content(file.getvalue()) response = supabase.table("documents").select("id").eq("metadata->>file_sha1", file_sha1).execute() return len(response.data) > 0