-- Create users table CREATE TABLE IF NOT EXISTS user_daily_usage( user_id UUID REFERENCES auth.users (id), email TEXT, date TEXT, daily_requests_count INT, PRIMARY KEY (user_id, date) ); -- Create chats table CREATE TABLE IF NOT EXISTS chats( chat_id UUID DEFAULT uuid_generate_v4() PRIMARY KEY, user_id UUID REFERENCES auth.users (id), creation_time TIMESTAMP DEFAULT current_timestamp, history JSONB, chat_name TEXT ); -- Create vector extension CREATE EXTENSION IF NOT EXISTS vector; -- Create vectors table CREATE TABLE IF NOT EXISTS vectors ( id UUID DEFAULT uuid_generate_v4() PRIMARY KEY, content TEXT, metadata JSONB, embedding VECTOR(1536) ); -- Create function to match vectors CREATE OR REPLACE FUNCTION match_vectors(query_embedding VECTOR(1536), match_count INT, p_brain_id UUID) RETURNS TABLE( id UUID, brain_id UUID, content TEXT, metadata JSONB, embedding VECTOR(1536), similarity FLOAT ) LANGUAGE plpgsql AS $$ #variable_conflict use_column BEGIN RETURN QUERY SELECT vectors.id, brains_vectors.brain_id, vectors.content, vectors.metadata, vectors.embedding, 1 - (vectors.embedding <=> query_embedding) AS similarity FROM vectors INNER JOIN brains_vectors ON vectors.id = brains_vectors.vector_id WHERE brains_vectors.brain_id = p_brain_id ORDER BY vectors.embedding <=> query_embedding LIMIT match_count; END; $$; -- Create stats table CREATE TABLE IF NOT EXISTS stats ( time TIMESTAMP, chat BOOLEAN, embedding BOOLEAN, details TEXT, metadata JSONB, id INTEGER PRIMARY KEY GENERATED ALWAYS AS IDENTITY ); -- Create summaries table CREATE TABLE IF NOT EXISTS summaries ( id BIGSERIAL PRIMARY KEY, document_id UUID REFERENCES vectors(id), content TEXT, metadata JSONB, embedding VECTOR(1536) ); -- Create function to match summaries CREATE OR REPLACE FUNCTION match_summaries(query_embedding VECTOR(1536), match_count INT, match_threshold FLOAT) RETURNS TABLE( id BIGINT, document_id UUID, content TEXT, metadata JSONB, embedding VECTOR(1536), similarity FLOAT ) LANGUAGE plpgsql AS $$ #variable_conflict use_column BEGIN RETURN QUERY SELECT id, document_id, content, metadata, embedding, 1 - (summaries.embedding <=> query_embedding) AS similarity FROM summaries WHERE 1 - (summaries.embedding <=> query_embedding) > match_threshold ORDER BY summaries.embedding <=> query_embedding LIMIT match_count; END; $$; -- Create api_keys table CREATE TABLE IF NOT EXISTS api_keys( key_id UUID DEFAULT gen_random_uuid() PRIMARY KEY, user_id UUID REFERENCES auth.users (id), api_key TEXT UNIQUE, creation_time TIMESTAMP DEFAULT current_timestamp, deleted_time TIMESTAMP, is_active BOOLEAN DEFAULT true ); --- Create prompts table CREATE TABLE IF NOT EXISTS prompts ( id UUID DEFAULT uuid_generate_v4() PRIMARY KEY, title VARCHAR(255), content TEXT, status VARCHAR(255) DEFAULT 'private' ); --- Create brains table CREATE TABLE IF NOT EXISTS brains ( brain_id UUID DEFAULT gen_random_uuid() PRIMARY KEY, name TEXT NOT NULL, status TEXT, description TEXT, model TEXT, max_tokens INT, temperature FLOAT, openai_api_key TEXT, prompt_id UUID REFERENCES prompts(id) ); -- Create chat_history table CREATE TABLE IF NOT EXISTS chat_history ( message_id UUID DEFAULT uuid_generate_v4(), chat_id UUID REFERENCES chats(chat_id), user_message TEXT, assistant TEXT, message_time TIMESTAMP DEFAULT current_timestamp, PRIMARY KEY (chat_id, message_id), prompt_id UUID REFERENCES prompts(id), brain_id UUID REFERENCES brains(brain_id) ); -- Create notification table CREATE TABLE IF NOT EXISTS notifications ( id UUID DEFAULT gen_random_uuid() PRIMARY KEY, datetime TIMESTAMP DEFAULT CURRENT_TIMESTAMP, chat_id UUID REFERENCES chats(chat_id), message TEXT, action VARCHAR(255) NOT NULL, status VARCHAR(255) NOT NULL ); -- Create brains X users table CREATE TABLE IF NOT EXISTS brains_users ( brain_id UUID, user_id UUID, rights VARCHAR(255), default_brain BOOLEAN DEFAULT false, PRIMARY KEY (brain_id, user_id), FOREIGN KEY (user_id) REFERENCES auth.users (id), FOREIGN KEY (brain_id) REFERENCES brains (brain_id) ); -- Create brains X vectors table CREATE TABLE IF NOT EXISTS brains_vectors ( brain_id UUID, vector_id UUID, file_sha1 TEXT, PRIMARY KEY (brain_id, vector_id), FOREIGN KEY (vector_id) REFERENCES vectors (id), FOREIGN KEY (brain_id) REFERENCES brains (brain_id) ); -- Create brains X vectors table CREATE TABLE IF NOT EXISTS brain_subscription_invitations ( brain_id UUID, email VARCHAR(255), rights VARCHAR(255), PRIMARY KEY (brain_id, email), FOREIGN KEY (brain_id) REFERENCES brains (brain_id) ); --- Create user_identity table CREATE TABLE IF NOT EXISTS user_identity ( user_id UUID PRIMARY KEY, openai_api_key VARCHAR(255) ); CREATE OR REPLACE FUNCTION public.get_user_email_by_user_id(user_id uuid) RETURNS TABLE (email text) SECURITY definer AS $$ BEGIN RETURN QUERY SELECT au.email::text FROM auth.users au WHERE au.id = user_id; END; $$ LANGUAGE plpgsql; CREATE OR REPLACE FUNCTION public.get_user_id_by_user_email(user_email text) RETURNS TABLE (user_id uuid) SECURITY DEFINER AS $$ BEGIN RETURN QUERY SELECT au.id::uuid FROM auth.users au WHERE au.email = user_email; END; $$ LANGUAGE plpgsql; CREATE TABLE IF NOT EXISTS migrations ( name VARCHAR(255) PRIMARY KEY, executed_at TIMESTAMPTZ DEFAULT current_timestamp ); INSERT INTO migrations (name) SELECT '20230906151400_add_notifications_table' WHERE NOT EXISTS ( SELECT 1 FROM migrations WHERE name = '20230906151400_add_notifications_table' );