from uuid import UUID from models.settings import get_embeddings, get_supabase_client from vectorstore.supabase import CustomSupabaseVectorStore def get_question_context_from_brain(brain_id: UUID, question: str) -> str: supabase_client = get_supabase_client() embeddings = get_embeddings() vector_store = CustomSupabaseVectorStore( supabase_client, embeddings, table_name="vectors", brain_id=str(brain_id), ) documents = vector_store.similarity_search(question) # aggregate all the documents into one string return "\n".join([doc.page_content for doc in documents])