import time from langchain.schema import Document from models.brains import Brain from models.files import File from utils.vectors import Neurons async def process_file( file: File, loader_class, enable_summarization, brain_id, user_openai_api_key, ): dateshort = time.strftime("%Y%m%d") file.compute_documents(loader_class) for doc in file.documents: # pyright: ignore reportPrivateUsage=none metadata = { "file_sha1": file.file_sha1, "file_size": file.file_size, "file_name": file.file_name, "chunk_size": file.chunk_size, "chunk_overlap": file.chunk_overlap, "date": dateshort, "summarization": "true" if enable_summarization else "false", } doc_with_metadata = Document(page_content=doc.page_content, metadata=metadata) neurons = Neurons() created_vector = neurons.create_vector(doc_with_metadata, user_openai_api_key) # add_usage(stats_db, "embedding", "audio", metadata={"file_name": file_meta_name,"file_type": ".txt", "chunk_size": chunk_size, "chunk_overlap": chunk_overlap}) created_vector_id = created_vector[0] # pyright: ignore reportPrivateUsage=none brain = Brain(id=brain_id) brain.create_brain_vector(created_vector_id, file.file_sha1) return