from fastapi import FastAPI, UploadFile, File, HTTPException import os from pydantic import BaseModel from typing import List, Tuple from supabase import create_client, Client from langchain.embeddings.openai import OpenAIEmbeddings from langchain.memory import ConversationBufferMemory from langchain.vectorstores import SupabaseVectorStore from langchain.chains import ConversationalRetrievalChain from langchain.llms import OpenAI from fastapi.openapi.utils import get_openapi from tempfile import SpooledTemporaryFile import shutil from parsers.common import file_already_exists from parsers.txt import process_txt from parsers.csv import process_csv from parsers.docx import process_docx from parsers.pdf import process_pdf from parsers.markdown import process_markdown from parsers.powerpoint import process_powerpoint from parsers.html import process_html from parsers.audio import process_audio from crawl.crawler import CrawlWebsite from fastapi.middleware.cors import CORSMiddleware app = FastAPI() origins = [ "http://localhost", "http://localhost:3000", "http://localhost:8080", ] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) supabase_url = os.environ.get("SUPABASE_URL") supabase_key = os.environ.get("SUPABASE_SERVICE_KEY") openai_api_key = os.environ.get("OPENAI_API_KEY") anthropic_api_key = "" supabase: Client = create_client(supabase_url, supabase_key) embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) vector_store = SupabaseVectorStore( supabase, embeddings, table_name="documents") memory = ConversationBufferMemory( memory_key="chat_history", return_messages=True) class ChatMessage(BaseModel): model: str = "gpt-3.5-turbo" question: str history: List[Tuple[str, str]] # A list of tuples where each tuple is (speaker, text) temperature: float = 0.0 max_tokens: int = 256 file_processors = { ".txt": process_txt, ".csv": process_csv, ".md": process_markdown, ".markdown": process_markdown, ".m4a": process_audio, ".mp3": process_audio, ".webm": process_audio, ".mp4": process_audio, ".mpga": process_audio, ".wav": process_audio, ".mpeg": process_audio, ".pdf": process_pdf, ".html": process_html, ".pptx": process_powerpoint, ".docx": process_docx } async def filter_file(file: UploadFile, supabase, vector_store, stats_db): if await file_already_exists(supabase, file): return {"message": f"🤔 {file.filename} already exists.", "type": "warning"} elif file.file._file.tell() < 1: return {"message": f"❌ {file.filename} is empty.", "type": "error"} else: file_extension = os.path.splitext(file.filename)[-1] if file_extension in file_processors: await file_processors[file_extension](vector_store, file, stats_db=None) return {"message": f"✅ {file.filename} has been uploaded.", "type": "success"} else: return {"message": f"❌ {file.filename} is not supported.", "type": "error"} @app.post("/upload") async def upload_file(file: UploadFile): message = await filter_file(file, supabase, vector_store, stats_db=None) return message @app.post("/chat/") async def chat_endpoint(chat_message: ChatMessage): history = chat_message.history # Logic from your Streamlit app goes here. For example: qa = None if chat_message.model.startswith("gpt"): qa = ConversationalRetrievalChain.from_llm( OpenAI( model_name=chat_message.model, openai_api_key=openai_api_key, temperature=chat_message.temperature, max_tokens=chat_message.max_tokens), vector_store.as_retriever(), memory=memory, verbose=True) elif anthropic_api_key and model.startswith("claude"): qa = ConversationalRetrievalChain.from_llm( ChatAnthropic( model=model, anthropic_api_key=anthropic_api_key, temperature=temperature, max_tokens_to_sample=max_tokens), vector_store.as_retriever(), memory=memory, verbose=True, max_tokens_limit=102400) history.append(("user", chat_message.question)) model_response = qa({"question": chat_message.question}) history.append(("assistant", model_response["answer"])) return {"history": history} @app.post("/crawl/") async def crawl_endpoint(crawl_website: CrawlWebsite): file_path, file_name = crawl_website.process() # Create a SpooledTemporaryFile from the file_path spooled_file = SpooledTemporaryFile() with open(file_path, 'rb') as f: shutil.copyfileobj(f, spooled_file) # Pass the SpooledTemporaryFile to UploadFile file = UploadFile(file=spooled_file, filename=file_name) message = await filter_file(file, supabase, vector_store) print(message) return {"message": message} @app.get("/explore") async def explore_endpoint(): response = supabase.table("documents").select("name:metadata->>file_name, size:metadata->>file_size", count="exact").execute() documents = response.data # Access the data from the response # Convert each dictionary to a tuple of items, then to a set to remove duplicates, and then back to a dictionary unique_data = [dict(t) for t in set(tuple(d.items()) for d in documents)] # Sort the list of documents by size in decreasing order unique_data.sort(key=lambda x: int(x['size']), reverse=True) return {"documents": unique_data} @app.delete("/explore/{file_name}") async def delete_endpoint(file_name: str): response = supabase.table("documents").delete().match({"metadata->>file_name": file_name}).execute() return {"message": f"{file_name} has been deleted."} @app.get("/explore/{file_name}") async def download_endpoint(file_name: str): response = supabase.table("documents").select("metadata->>file_name, metadata->>file_size, metadata->>file_extension, metadata->>file_url").match({"metadata->>file_name": file_name}).execute() documents = response.data ### Returns all documents with the same file name return {"documents": documents} @app.get("/") async def root(): return {"message": "Hello World"}