import os import time from http.client import HTTPException from typing import List from uuid import UUID from auth.auth_bearer import AuthBearer, get_current_user from fastapi import APIRouter, Depends, Query, Request from fastapi.responses import StreamingResponse from llm.brainpicking import BrainPicking from llm.BrainPickingOpenAIFunctions.BrainPickingOpenAIFunctions import ( BrainPickingOpenAIFunctions, ) from llm.PrivateBrainPicking import PrivateBrainPicking from models.chat import Chat, ChatHistory from models.chats import ChatQuestion from models.settings import LLMSettings, common_dependencies from models.users import User from repository.chat.create_chat import CreateChatProperties, create_chat from repository.chat.get_chat_by_id import get_chat_by_id from repository.chat.get_chat_history import get_chat_history from repository.chat.get_user_chats import get_user_chats from repository.chat.update_chat import ChatUpdatableProperties, update_chat from repository.chat.update_chat_history import update_chat_history from utils.constants import ( openai_function_compatible_models, streaming_compatible_models, ) chat_router = APIRouter() def get_chat_details(commons, chat_id): response = ( commons["supabase"] .from_("chats") .select("*") .filter("chat_id", "eq", chat_id) .execute() ) return response.data def delete_chat_from_db(commons, chat_id): try: commons["supabase"].table("chat_history").delete().match( {"chat_id": chat_id} ).execute() except Exception as e: print(e) pass try: commons["supabase"].table("chats").delete().match( {"chat_id": chat_id} ).execute() except Exception as e: print(e) pass def fetch_user_stats(commons, user, date): response = ( commons["supabase"] .from_("users") .select("*") .filter("email", "eq", user.email) .filter("date", "eq", date) .execute() ) userItem = next(iter(response.data or []), {"requests_count": 0}) return userItem def check_user_limit( user: User, ): if user.user_openai_api_key is None: date = time.strftime("%Y%m%d") max_requests_number = os.getenv("MAX_REQUESTS_NUMBER") user.increment_user_request_count(date) if user.requests_count >= float(max_requests_number): raise HTTPException( status_code=429, detail="You have reached the maximum number of requests for today.", ) else: pass # get all chats @chat_router.get("/chat", dependencies=[Depends(AuthBearer())], tags=["Chat"]) async def get_chats(current_user: User = Depends(get_current_user)): """ Retrieve all chats for the current user. - `current_user`: The current authenticated user. - Returns a list of all chats for the user. This endpoint retrieves all the chats associated with the current authenticated user. It returns a list of chat objects containing the chat ID and chat name for each chat. """ chats = get_user_chats(current_user.id) return {"chats": chats} # delete one chat @chat_router.delete( "/chat/{chat_id}", dependencies=[Depends(AuthBearer())], tags=["Chat"] ) async def delete_chat(chat_id: UUID): """ Delete a specific chat by chat ID. """ commons = common_dependencies() delete_chat_from_db(commons, chat_id) return {"message": f"{chat_id} has been deleted."} # update existing chat metadata @chat_router.put( "/chat/{chat_id}/metadata", dependencies=[Depends(AuthBearer())], tags=["Chat"] ) async def update_chat_metadata_handler( chat_data: ChatUpdatableProperties, chat_id: UUID, current_user: User = Depends(get_current_user), ) -> Chat: """ Update chat attributes """ chat = get_chat_by_id(chat_id) if current_user.id != chat.user_id: raise HTTPException( status_code=403, detail="You should be the owner of the chat to update it." ) return update_chat(chat_id=chat_id, chat_data=chat_data) # create new chat @chat_router.post("/chat", dependencies=[Depends(AuthBearer())], tags=["Chat"]) async def create_chat_handler( chat_data: CreateChatProperties, current_user: User = Depends(get_current_user), ): """ Create a new chat with initial chat messages. """ return create_chat(user_id=current_user.id, chat_data=chat_data) # add new question to chat @chat_router.post( "/chat/{chat_id}/question", dependencies=[Depends(AuthBearer())], tags=["Chat"] ) async def create_question_handler( request: Request, chat_question: ChatQuestion, chat_id: UUID, brain_id: UUID = Query(..., description="The ID of the brain"), current_user: User = Depends(get_current_user), ) -> ChatHistory: current_user.user_openai_api_key = request.headers.get("Openai-Api-Key") print("current_user", current_user) try: check_user_limit(current_user) llm_settings = LLMSettings() if llm_settings.private: gpt_answer_generator = PrivateBrainPicking( model=chat_question.model, chat_id=str(chat_id), temperature=chat_question.temperature, max_tokens=chat_question.max_tokens, brain_id=brain_id, user_openai_api_key=current_user.user_openai_api_key, ) answer = gpt_answer_generator.generate_answer(chat_question.question) elif chat_question.model in openai_function_compatible_models: # TODO: RBAC with current_user gpt_answer_generator = BrainPickingOpenAIFunctions( model=chat_question.model, chat_id=str(chat_id), temperature=chat_question.temperature, max_tokens=chat_question.max_tokens, # TODO: use user_id in vectors table instead of email brain_id=brain_id, user_openai_api_key=current_user.user_openai_api_key, ) answer = gpt_answer_generator.generate_answer(chat_question.question) else: brainPicking = BrainPicking( chat_id=str(chat_id), model=chat_question.model, max_tokens=chat_question.max_tokens, temperature=chat_question.temperature, brain_id=brain_id, user_openai_api_key=current_user.user_openai_api_key, ) answer = brainPicking.generate_answer(chat_question.question) chat_answer = update_chat_history( chat_id=chat_id, user_message=chat_question.question, assistant=answer, ) return chat_answer except HTTPException as e: raise e # stream new question response from chat @chat_router.post( "/chat/{chat_id}/question/stream", dependencies=[Depends(AuthBearer())], tags=["Chat"], ) async def create_stream_question_handler( request: Request, chat_question: ChatQuestion, chat_id: UUID, brain_id: UUID = Query(..., description="The ID of the brain"), current_user: User = Depends(get_current_user), ) -> StreamingResponse: if ( os.getenv("PRIVATE") == "True" or chat_question.model not in streaming_compatible_models ): # forward the request to the none streaming endpoint create_question_handler function return await create_question_handler( request, chat_question, chat_id, current_user ) try: user_openai_api_key = request.headers.get("Openai-Api-Key") check_user_limit(current_user) brain = BrainPicking( chat_id=str(chat_id), model=chat_question.model, max_tokens=chat_question.max_tokens, temperature=chat_question.temperature, brain_id=brain_id, user_openai_api_key=user_openai_api_key, streaming=True, ) return StreamingResponse( brain.generate_stream(chat_question.question), media_type="text/event-stream", ) except HTTPException as e: raise e # get chat history @chat_router.get( "/chat/{chat_id}/history", dependencies=[Depends(AuthBearer())], tags=["Chat"] ) async def get_chat_history_handler( chat_id: UUID, ) -> List[ChatHistory]: # TODO: RBAC with current_user return get_chat_history(chat_id)