quivr/backend/llm/qa.py
Stan Girard a3ca7ecb37
Back/refacto files (#240)
* feat(docker): added docker for prod

* feat(refacto): moved to modules
2023-06-03 23:12:42 +02:00

106 lines
4.3 KiB
Python

import os
from typing import Any, List
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI, ChatVertexAI
from langchain.chat_models.anthropic import ChatAnthropic
from langchain.docstore.document import Document
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import VertexAI
from langchain.memory import ConversationBufferMemory
from langchain.vectorstores import SupabaseVectorStore
from llm import LANGUAGE_PROMPT
from models.chats import ChatMessage
from supabase import Client, create_client
class CustomSupabaseVectorStore(SupabaseVectorStore):
'''A custom vector store that uses the match_vectors table instead of the vectors table.'''
user_id: str
def __init__(self, client: Client, embedding: OpenAIEmbeddings, table_name: str, user_id: str = "none"):
super().__init__(client, embedding, table_name)
self.user_id = user_id
def similarity_search(
self,
query: str,
user_id: str = "none",
table: str = "match_vectors",
k: int = 4,
threshold: float = 0.5,
**kwargs: Any
) -> List[Document]:
vectors = self._embedding.embed_documents([query])
query_embedding = vectors[0]
res = self._client.rpc(
table,
{
"query_embedding": query_embedding,
"match_count": k,
"p_user_id": self.user_id,
},
).execute()
match_result = [
(
Document(
metadata=search.get("metadata", {}), # type: ignore
page_content=search.get("content", ""),
),
search.get("similarity", 0.0),
)
for search in res.data
if search.get("content")
]
documents = [doc for doc, _ in match_result]
return documents
def get_environment_variables():
'''Get the environment variables.'''
openai_api_key = os.getenv("OPENAI_API_KEY")
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
supabase_url = os.getenv("SUPABASE_URL")
supabase_key = os.getenv("SUPABASE_SERVICE_KEY")
return openai_api_key, anthropic_api_key, supabase_url, supabase_key
def create_clients_and_embeddings(openai_api_key, supabase_url, supabase_key):
'''Create the clients and embeddings.'''
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
supabase_client = create_client(supabase_url, supabase_key)
return supabase_client, embeddings
def get_qa_llm(chat_message: ChatMessage, user_id: str):
'''Get the question answering language model.'''
openai_api_key, anthropic_api_key, supabase_url, supabase_key = get_environment_variables()
supabase_client, embeddings = create_clients_and_embeddings(openai_api_key, supabase_url, supabase_key)
vector_store = CustomSupabaseVectorStore(
supabase_client, embeddings, table_name="vectors", user_id=user_id)
memory = ConversationBufferMemory(
memory_key="chat_history", return_messages=True)
ConversationalRetrievalChain.prompts = LANGUAGE_PROMPT
qa = None
# this overwrites the built-in prompt of the ConversationalRetrievalChain
ConversationalRetrievalChain.prompts = LANGUAGE_PROMPT
if chat_message.model.startswith("gpt"):
qa = ConversationalRetrievalChain.from_llm(
ChatOpenAI(
model_name=chat_message.model, openai_api_key=openai_api_key,
temperature=chat_message.temperature, max_tokens=chat_message.max_tokens),
vector_store.as_retriever(), memory=memory, verbose=True,
max_tokens_limit=1024)
elif chat_message.model.startswith("vertex"):
qa = ConversationalRetrievalChain.from_llm(
ChatVertexAI(), vector_store.as_retriever(), memory=memory, verbose=False, max_tokens_limit=1024)
elif anthropic_api_key and chat_message.model.startswith("claude"):
qa = ConversationalRetrievalChain.from_llm(
ChatAnthropic(
model=chat_message.model, anthropic_api_key=anthropic_api_key, temperature=chat_message.temperature, max_tokens_to_sample=chat_message.max_tokens), vector_store.as_retriever(), memory=memory, verbose=False, max_tokens_limit=102400)
return qa