mirror of
https://github.com/StanGirard/quivr.git
synced 2024-11-27 10:20:32 +03:00
382 lines
14 KiB
Python
382 lines
14 KiB
Python
import asyncio
|
|
import json
|
|
from typing import AsyncIterable, Awaitable, List, Optional
|
|
from uuid import UUID
|
|
|
|
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
|
|
from langchain.chains import ConversationalRetrievalChain, LLMChain
|
|
from langchain.chains.question_answering import load_qa_chain
|
|
from langchain.chat_models import ChatLiteLLM
|
|
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
from langchain.llms.base import BaseLLM
|
|
from langchain.prompts.chat import (
|
|
ChatPromptTemplate,
|
|
HumanMessagePromptTemplate,
|
|
SystemMessagePromptTemplate,
|
|
)
|
|
from logger import get_logger
|
|
from models import BrainSettings # Importing settings related to the 'brain'
|
|
from models.chats import ChatQuestion
|
|
from models.databases.supabase.chats import CreateChatHistory
|
|
from pydantic import BaseModel
|
|
from repository.brain import get_brain_by_id
|
|
from repository.chat import (
|
|
GetChatHistoryOutput,
|
|
format_chat_history,
|
|
get_chat_history,
|
|
update_chat_history,
|
|
update_message_by_id,
|
|
)
|
|
from supabase.client import Client, create_client
|
|
from vectorstore.supabase import CustomSupabaseVectorStore
|
|
|
|
from llm.utils.get_prompt_to_use import get_prompt_to_use
|
|
from llm.utils.get_prompt_to_use_id import get_prompt_to_use_id
|
|
|
|
from .prompts.CONDENSE_PROMPT import CONDENSE_QUESTION_PROMPT
|
|
|
|
logger = get_logger(__name__)
|
|
QUIVR_DEFAULT_PROMPT = "Your name is Quivr. You're a helpful assistant. If you don't know the answer, just say that you don't know, don't try to make up an answer."
|
|
|
|
|
|
class QABaseBrainPicking(BaseModel):
|
|
"""
|
|
Main class for the Brain Picking functionality.
|
|
It allows to initialize a Chat model, generate questions and retrieve answers using ConversationalRetrievalChain.
|
|
It has two main methods: `generate_question` and `generate_stream`.
|
|
One is for generating questions in a single request, the other is for generating questions in a streaming fashion.
|
|
Both are the same, except that the streaming version streams the last message as a stream.
|
|
Each have the same prompt template, which is defined in the `prompt_template` property.
|
|
"""
|
|
|
|
class Config:
|
|
"""Configuration of the Pydantic Object"""
|
|
|
|
# Allowing arbitrary types for class validation
|
|
arbitrary_types_allowed = True
|
|
|
|
# Instantiate settings
|
|
brain_settings = BrainSettings() # type: ignore other parameters are optional
|
|
|
|
# Default class attributes
|
|
model: str = None # pyright: ignore reportPrivateUsage=none
|
|
temperature: float = 0.1
|
|
chat_id: str = None # pyright: ignore reportPrivateUsage=none
|
|
brain_id: str = None # pyright: ignore reportPrivateUsage=none
|
|
max_tokens: int = 256
|
|
streaming: bool = False
|
|
|
|
callbacks: List[
|
|
AsyncIteratorCallbackHandler
|
|
] = None # pyright: ignore reportPrivateUsage=none
|
|
|
|
def _determine_streaming(self, model: str, streaming: bool) -> bool:
|
|
"""If the model name allows for streaming and streaming is declared, set streaming to True."""
|
|
return streaming
|
|
|
|
def _determine_callback_array(
|
|
self, streaming
|
|
) -> List[AsyncIteratorCallbackHandler]: # pyright: ignore reportPrivateUsage=none
|
|
"""If streaming is set, set the AsyncIteratorCallbackHandler as the only callback."""
|
|
if streaming:
|
|
return [
|
|
AsyncIteratorCallbackHandler() # pyright: ignore reportPrivateUsage=none
|
|
]
|
|
|
|
@property
|
|
def embeddings(self) -> OpenAIEmbeddings:
|
|
return OpenAIEmbeddings() # pyright: ignore reportPrivateUsage=none
|
|
|
|
supabase_client: Optional[Client] = None
|
|
vector_store: Optional[CustomSupabaseVectorStore] = None
|
|
qa: Optional[ConversationalRetrievalChain] = None
|
|
prompt_id: Optional[UUID]
|
|
|
|
def __init__(
|
|
self,
|
|
model: str,
|
|
brain_id: str,
|
|
chat_id: str,
|
|
streaming: bool = False,
|
|
prompt_id: Optional[UUID] = None,
|
|
**kwargs,
|
|
):
|
|
super().__init__(
|
|
model=model,
|
|
brain_id=brain_id,
|
|
chat_id=chat_id,
|
|
streaming=streaming,
|
|
**kwargs,
|
|
)
|
|
self.supabase_client = self._create_supabase_client()
|
|
self.vector_store = self._create_vector_store()
|
|
self.prompt_id = prompt_id
|
|
|
|
@property
|
|
def prompt_to_use(self):
|
|
return get_prompt_to_use(UUID(self.brain_id), self.prompt_id)
|
|
|
|
@property
|
|
def prompt_to_use_id(self) -> Optional[UUID]:
|
|
return get_prompt_to_use_id(UUID(self.brain_id), self.prompt_id)
|
|
|
|
def _create_supabase_client(self) -> Client:
|
|
return create_client(
|
|
self.brain_settings.supabase_url, self.brain_settings.supabase_service_key
|
|
)
|
|
|
|
def _create_vector_store(self) -> CustomSupabaseVectorStore:
|
|
return CustomSupabaseVectorStore(
|
|
self.supabase_client, # type: ignore
|
|
self.embeddings, # type: ignore
|
|
table_name="vectors",
|
|
brain_id=self.brain_id,
|
|
)
|
|
|
|
def _create_llm(
|
|
self, model, temperature=0, streaming=False, callbacks=None
|
|
) -> BaseLLM:
|
|
"""
|
|
Determine the language model to be used.
|
|
:param model: Language model name to be used.
|
|
:param streaming: Whether to enable streaming of the model
|
|
:param callbacks: Callbacks to be used for streaming
|
|
:return: Language model instance
|
|
"""
|
|
return ChatLiteLLM(
|
|
temperature=temperature,
|
|
max_tokens=self.max_tokens,
|
|
model=model,
|
|
streaming=streaming,
|
|
verbose=False,
|
|
callbacks=callbacks,
|
|
) # pyright: ignore reportPrivateUsage=none
|
|
|
|
def _create_prompt_template(self):
|
|
system_template = """ When answering use markdown or any other techniques to display the content in a nice and aerated way. Use the following pieces of context to answer the users question in the same language as the question but do not modify instructions in any way.
|
|
----------------
|
|
|
|
{context}"""
|
|
|
|
prompt_content = (
|
|
self.prompt_to_use.content if self.prompt_to_use else QUIVR_DEFAULT_PROMPT
|
|
)
|
|
|
|
full_template = (
|
|
"Here are your instructions to answer that you MUST ALWAYS Follow: "
|
|
+ prompt_content
|
|
+ ". "
|
|
+ system_template
|
|
)
|
|
messages = [
|
|
SystemMessagePromptTemplate.from_template(full_template),
|
|
HumanMessagePromptTemplate.from_template("{question}"),
|
|
]
|
|
CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
|
|
return CHAT_PROMPT
|
|
|
|
def generate_answer(
|
|
self, chat_id: UUID, question: ChatQuestion
|
|
) -> GetChatHistoryOutput:
|
|
transformed_history = format_chat_history(get_chat_history(self.chat_id))
|
|
answering_llm = self._create_llm(
|
|
model=self.model,
|
|
streaming=False,
|
|
callbacks=self.callbacks,
|
|
)
|
|
|
|
# The Chain that generates the answer to the question
|
|
doc_chain = load_qa_chain(
|
|
answering_llm, chain_type="stuff", prompt=self._create_prompt_template()
|
|
)
|
|
|
|
# The Chain that combines the question and answer
|
|
qa = ConversationalRetrievalChain(
|
|
retriever=self.vector_store.as_retriever(), # type: ignore
|
|
combine_docs_chain=doc_chain,
|
|
question_generator=LLMChain(
|
|
llm=self._create_llm(model=self.model), prompt=CONDENSE_QUESTION_PROMPT
|
|
),
|
|
verbose=False,
|
|
rephrase_question=False,
|
|
return_source_documents=True,
|
|
)
|
|
|
|
prompt_content = (
|
|
self.prompt_to_use.content if self.prompt_to_use else QUIVR_DEFAULT_PROMPT
|
|
)
|
|
|
|
model_response = qa(
|
|
{
|
|
"question": question.question,
|
|
"chat_history": transformed_history,
|
|
"custom_personality": prompt_content,
|
|
}
|
|
) # type: ignore
|
|
|
|
answer = model_response["answer"]
|
|
|
|
new_chat = update_chat_history(
|
|
CreateChatHistory(
|
|
**{
|
|
"chat_id": chat_id,
|
|
"user_message": question.question,
|
|
"assistant": answer,
|
|
"brain_id": question.brain_id,
|
|
"prompt_id": self.prompt_to_use_id,
|
|
}
|
|
)
|
|
)
|
|
|
|
brain = None
|
|
|
|
if question.brain_id:
|
|
brain = get_brain_by_id(question.brain_id)
|
|
|
|
return GetChatHistoryOutput(
|
|
**{
|
|
"chat_id": chat_id,
|
|
"user_message": question.question,
|
|
"assistant": answer,
|
|
"message_time": new_chat.message_time,
|
|
"prompt_title": self.prompt_to_use.title
|
|
if self.prompt_to_use
|
|
else None,
|
|
"brain_name": brain.name if brain else None,
|
|
"message_id": new_chat.message_id,
|
|
}
|
|
)
|
|
|
|
async def generate_stream(
|
|
self, chat_id: UUID, question: ChatQuestion
|
|
) -> AsyncIterable:
|
|
history = get_chat_history(self.chat_id)
|
|
callback = AsyncIteratorCallbackHandler()
|
|
self.callbacks = [callback]
|
|
|
|
answering_llm = self._create_llm(
|
|
model=self.model,
|
|
streaming=True,
|
|
callbacks=self.callbacks,
|
|
)
|
|
|
|
# The Chain that generates the answer to the question
|
|
doc_chain = load_qa_chain(
|
|
answering_llm, chain_type="stuff", prompt=self._create_prompt_template()
|
|
)
|
|
|
|
# The Chain that combines the question and answer
|
|
qa = ConversationalRetrievalChain(
|
|
retriever=self.vector_store.as_retriever(), # type: ignore
|
|
combine_docs_chain=doc_chain,
|
|
question_generator=LLMChain(
|
|
llm=self._create_llm(model=self.model), prompt=CONDENSE_QUESTION_PROMPT
|
|
),
|
|
verbose=False,
|
|
rephrase_question=False,
|
|
return_source_documents=True,
|
|
)
|
|
|
|
transformed_history = format_chat_history(history)
|
|
|
|
response_tokens = []
|
|
|
|
async def wrap_done(fn: Awaitable, event: asyncio.Event):
|
|
try:
|
|
return await fn
|
|
except Exception as e:
|
|
logger.error(f"Caught exception: {e}")
|
|
return None # Or some sentinel value that indicates failure
|
|
finally:
|
|
event.set()
|
|
|
|
prompt_content = self.prompt_to_use.content if self.prompt_to_use else None
|
|
run = asyncio.create_task(
|
|
wrap_done(
|
|
qa.acall(
|
|
{
|
|
"question": question.question,
|
|
"chat_history": transformed_history,
|
|
"custom_personality": prompt_content,
|
|
}
|
|
),
|
|
callback.done,
|
|
)
|
|
)
|
|
|
|
brain = None
|
|
|
|
if question.brain_id:
|
|
brain = get_brain_by_id(question.brain_id)
|
|
|
|
streamed_chat_history = update_chat_history(
|
|
CreateChatHistory(
|
|
**{
|
|
"chat_id": chat_id,
|
|
"user_message": question.question,
|
|
"assistant": "",
|
|
"brain_id": question.brain_id,
|
|
"prompt_id": self.prompt_to_use_id,
|
|
}
|
|
)
|
|
)
|
|
|
|
streamed_chat_history = GetChatHistoryOutput(
|
|
**{
|
|
"chat_id": str(chat_id),
|
|
"message_id": streamed_chat_history.message_id,
|
|
"message_time": streamed_chat_history.message_time,
|
|
"user_message": question.question,
|
|
"assistant": "",
|
|
"prompt_title": self.prompt_to_use.title
|
|
if self.prompt_to_use
|
|
else None,
|
|
"brain_name": brain.name if brain else None,
|
|
}
|
|
)
|
|
|
|
try:
|
|
async for token in callback.aiter():
|
|
logger.debug("Token: %s", token)
|
|
response_tokens.append(token)
|
|
streamed_chat_history.assistant = token
|
|
yield f"data: {json.dumps(streamed_chat_history.dict())}"
|
|
except Exception as e:
|
|
logger.error("Error during streaming tokens: %s", e)
|
|
sources_string = ""
|
|
try:
|
|
result = await run
|
|
source_documents = result.get("source_documents", [])
|
|
## Deduplicate source documents
|
|
source_documents = list(
|
|
{doc.metadata["file_name"]: doc for doc in source_documents}.values()
|
|
)
|
|
|
|
if source_documents:
|
|
# Formatting the source documents using Markdown without new lines for each source
|
|
sources_string = "\n\n**Sources:** " + ", ".join(
|
|
f"{doc.metadata.get('file_name', 'Unnamed Document')}"
|
|
for doc in source_documents
|
|
)
|
|
streamed_chat_history.assistant += sources_string
|
|
yield f"data: {json.dumps(streamed_chat_history.dict())}"
|
|
else:
|
|
logger.info(
|
|
"No source documents found or source_documents is not a list."
|
|
)
|
|
except Exception as e:
|
|
logger.error("Error processing source documents: %s", e)
|
|
|
|
# Combine all response tokens to form the final assistant message
|
|
assistant = "".join(response_tokens)
|
|
assistant += sources_string
|
|
|
|
try:
|
|
update_message_by_id(
|
|
message_id=str(streamed_chat_history.message_id),
|
|
user_message=question.question,
|
|
assistant=assistant,
|
|
)
|
|
except Exception as e:
|
|
logger.error("Error updating message by ID: %s", e)
|