quivr/backend/llm/qa_headless.py
Zineb El Bachiri 1bf67e3640
refactor: Prompt module (#1688)
# Description

Prompt module with Service

## Checklist before requesting a review

Please delete options that are not relevant.

- [ ] My code follows the style guidelines of this project
- [ ] I have performed a self-review of my code
- [ ] I have commented hard-to-understand areas
- [ ] I have ideally added tests that prove my fix is effective or that
my feature works
- [ ] New and existing unit tests pass locally with my changes
- [ ] Any dependent changes have been merged

## Screenshots (if appropriate):
2023-11-23 14:13:21 +01:00

217 lines
7.3 KiB
Python

import asyncio
import json
from typing import AsyncIterable, Awaitable, List, Optional
from uuid import UUID
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
from langchain.chains import LLMChain
from langchain.chat_models import ChatLiteLLM
from langchain.chat_models.base import BaseChatModel
from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate
from llm.utils.get_prompt_to_use import get_prompt_to_use
from llm.utils.get_prompt_to_use_id import get_prompt_to_use_id
from logger import get_logger
from models.chats import ChatQuestion
from models.databases.supabase.chats import CreateChatHistory
from modules.prompt.entity.prompt import Prompt
from pydantic import BaseModel
from repository.chat import (
GetChatHistoryOutput,
format_chat_history,
format_history_to_openai_mesages,
get_chat_history,
update_chat_history,
update_message_by_id,
)
logger = get_logger(__name__)
SYSTEM_MESSAGE = "Your name is Quivr. You're a helpful assistant. If you don't know the answer, just say that you don't know, don't try to make up an answer.When answering use markdown or any other techniques to display the content in a nice and aerated way."
class HeadlessQA(BaseModel):
model: str
temperature: float = 0.0
max_tokens: int = 2000
streaming: bool = False
chat_id: str
callbacks: Optional[List[AsyncIteratorCallbackHandler]] = None
prompt_id: Optional[UUID] = None
def _determine_streaming(self, streaming: bool) -> bool:
"""If the model name allows for streaming and streaming is declared, set streaming to True."""
return streaming
def _determine_callback_array(
self, streaming
) -> List[AsyncIteratorCallbackHandler]:
"""If streaming is set, set the AsyncIteratorCallbackHandler as the only callback."""
if streaming:
return [AsyncIteratorCallbackHandler()]
else:
return []
def __init__(self, **data):
super().__init__(**data)
self.streaming = self._determine_streaming(self.streaming)
self.callbacks = self._determine_callback_array(self.streaming)
@property
def prompt_to_use(self) -> Optional[Prompt]:
return get_prompt_to_use(None, self.prompt_id)
@property
def prompt_to_use_id(self) -> Optional[UUID]:
return get_prompt_to_use_id(None, self.prompt_id)
def _create_llm(
self, model, temperature=0, streaming=False, callbacks=None
) -> BaseChatModel:
"""
Determine the language model to be used.
:param model: Language model name to be used.
:param streaming: Whether to enable streaming of the model
:param callbacks: Callbacks to be used for streaming
:return: Language model instance
"""
return ChatLiteLLM(
temperature=0.1,
model=model,
streaming=streaming,
verbose=True,
callbacks=callbacks,
)
def _create_prompt_template(self):
messages = [
HumanMessagePromptTemplate.from_template("{question}"),
]
CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
return CHAT_PROMPT
def generate_answer(
self, chat_id: UUID, question: ChatQuestion
) -> GetChatHistoryOutput:
transformed_history = format_chat_history(get_chat_history(self.chat_id))
prompt_content = (
self.prompt_to_use.content if self.prompt_to_use else SYSTEM_MESSAGE
)
messages = format_history_to_openai_mesages(
transformed_history, prompt_content, question.question
)
answering_llm = self._create_llm(
model=self.model, streaming=False, callbacks=self.callbacks
)
model_prediction = answering_llm.predict_messages(messages)
answer = model_prediction.content
new_chat = update_chat_history(
CreateChatHistory(
**{
"chat_id": chat_id,
"user_message": question.question,
"assistant": answer,
"brain_id": None,
"prompt_id": self.prompt_to_use_id,
}
)
)
return GetChatHistoryOutput(
**{
"chat_id": chat_id,
"user_message": question.question,
"assistant": answer,
"message_time": new_chat.message_time,
"prompt_title": self.prompt_to_use.title
if self.prompt_to_use
else None,
"brain_name": None,
"message_id": new_chat.message_id,
}
)
async def generate_stream(
self, chat_id: UUID, question: ChatQuestion
) -> AsyncIterable:
callback = AsyncIteratorCallbackHandler()
self.callbacks = [callback]
transformed_history = format_chat_history(get_chat_history(self.chat_id))
prompt_content = (
self.prompt_to_use.content if self.prompt_to_use else SYSTEM_MESSAGE
)
messages = format_history_to_openai_mesages(
transformed_history, prompt_content, question.question
)
answering_llm = self._create_llm(
model=self.model,
streaming=True,
callbacks=self.callbacks,
)
CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
headlessChain = LLMChain(llm=answering_llm, prompt=CHAT_PROMPT)
response_tokens = []
async def wrap_done(fn: Awaitable, event: asyncio.Event):
try:
await fn
except Exception as e:
logger.error(f"Caught exception: {e}")
finally:
event.set()
run = asyncio.create_task(
wrap_done(
headlessChain.acall({}),
callback.done,
),
)
streamed_chat_history = update_chat_history(
CreateChatHistory(
**{
"chat_id": chat_id,
"user_message": question.question,
"assistant": "",
"brain_id": None,
"prompt_id": self.prompt_to_use_id,
}
)
)
streamed_chat_history = GetChatHistoryOutput(
**{
"chat_id": str(chat_id),
"message_id": streamed_chat_history.message_id,
"message_time": streamed_chat_history.message_time,
"user_message": question.question,
"assistant": "",
"prompt_title": self.prompt_to_use.title
if self.prompt_to_use
else None,
"brain_name": None,
}
)
async for token in callback.aiter():
logger.info("Token: %s", token)
response_tokens.append(token)
streamed_chat_history.assistant = token
yield f"data: {json.dumps(streamed_chat_history.dict())}"
await run
assistant = "".join(response_tokens)
update_message_by_id(
message_id=str(streamed_chat_history.message_id),
user_message=question.question,
assistant=assistant,
)
class Config:
arbitrary_types_allowed = True