quivr/backend/llm/api_brain_qa.py
Zineb El Bachiri 436e49a5e7
refactor: chat for multibrains (#1812)
# Description

- Chat Module
- External Api Secrets Interface, exposed through brain service
2023-12-04 18:38:54 +01:00

215 lines
7.6 KiB
Python

import json
from typing import Optional
from uuid import UUID
from fastapi import HTTPException
from litellm import completion
from llm.qa_base import QABaseBrainPicking
from llm.utils.call_brain_api import call_brain_api
from llm.utils.get_api_brain_definition_as_json_schema import (
get_api_brain_definition_as_json_schema,
)
from logger import get_logger
from modules.brain.service.brain_service import BrainService
from modules.chat.dto.chats import ChatQuestion
from modules.chat.dto.inputs import CreateChatHistory
from modules.chat.dto.outputs import GetChatHistoryOutput
from modules.chat.service.chat_service import ChatService
brain_service = BrainService()
chat_service = ChatService()
logger = get_logger(__name__)
class APIBrainQA(
QABaseBrainPicking,
):
user_id: UUID
def __init__(
self,
model: str,
brain_id: str,
chat_id: str,
streaming: bool = False,
prompt_id: Optional[UUID] = None,
**kwargs,
):
user_id = kwargs.get("user_id")
if not user_id:
raise HTTPException(status_code=400, detail="Cannot find user id")
super().__init__(
model=model,
brain_id=brain_id,
chat_id=chat_id,
streaming=streaming,
prompt_id=prompt_id,
**kwargs,
)
self.user_id = user_id
async def make_completion(
self,
messages,
functions,
brain_id: UUID,
recursive_count=0,
):
if recursive_count > 5:
yield "🧠<Deciding what to do>🧠"
yield "The assistant is having issues and took more than 5 calls to the API. Please try again later or an other instruction."
return
yield "🧠<Deciding what to do>🧠"
response = completion(
model=self.model,
temperature=self.temperature,
max_tokens=self.max_tokens,
messages=messages,
functions=functions,
stream=True,
function_call="auto",
)
function_call = {
"name": None,
"arguments": "",
}
for chunk in response:
finish_reason = chunk.choices[0].finish_reason
if finish_reason == "stop":
break
if (
"function_call" in chunk.choices[0].delta
and chunk.choices[0].delta["function_call"]
):
if chunk.choices[0].delta["function_call"].name:
function_call["name"] = chunk.choices[0].delta["function_call"].name
if chunk.choices[0].delta["function_call"].arguments:
function_call["arguments"] += (
chunk.choices[0].delta["function_call"].arguments
)
elif finish_reason == "function_call":
try:
arguments = json.loads(function_call["arguments"])
except Exception:
arguments = {}
yield f"🧠<Calling {brain_id} with arguments {arguments}>🧠"
try:
api_call_response = call_brain_api(
brain_id=brain_id,
user_id=self.user_id,
arguments=arguments,
)
except Exception as e:
raise HTTPException(
status_code=400,
detail=f"Error while calling API: {e}",
)
function_name = function_call["name"]
messages.append(
{
"role": "function",
"name": function_call["name"],
"content": f"The function {function_name} was called and gave The following answer:(data from function) {api_call_response} (end of data from function). Don't call this function again unless there was an error or extremely necessary and asked specifically by the user.",
}
)
async for value in self.make_completion(
messages=messages,
functions=functions,
brain_id=brain_id,
recursive_count=recursive_count + 1,
):
yield value
else:
if (
hasattr(chunk.choices[0], "delta")
and chunk.choices[0].delta
and hasattr(chunk.choices[0].delta, "content")
):
content = chunk.choices[0].delta.content
yield content
else: # pragma: no cover
yield "**...**"
break
async def generate_stream(self, chat_id: UUID, question: ChatQuestion):
if not question.brain_id:
raise HTTPException(
status_code=400, detail="No brain id provided in the question"
)
brain = brain_service.get_brain_by_id(question.brain_id)
if not brain:
raise HTTPException(status_code=404, detail="Brain not found")
prompt_content = "You are a helpful assistant that can access functions to help answer questions. If there are information missing in the question, you can ask follow up questions to get more information to the user. Once all the information is available, you can call the function to get the answer."
if self.prompt_to_use:
prompt_content += self.prompt_to_use.content
messages = [{"role": "system", "content": prompt_content}]
history = chat_service.get_chat_history(self.chat_id)
for message in history:
formatted_message = [
{"role": "user", "content": message.user_message},
{"role": "assistant", "content": message.assistant},
]
messages.extend(formatted_message)
messages.append({"role": "user", "content": question.question})
streamed_chat_history = chat_service.update_chat_history(
CreateChatHistory(
**{
"chat_id": chat_id,
"user_message": question.question,
"assistant": "",
"brain_id": question.brain_id,
"prompt_id": self.prompt_to_use_id,
}
)
)
streamed_chat_history = GetChatHistoryOutput(
**{
"chat_id": str(chat_id),
"message_id": streamed_chat_history.message_id,
"message_time": streamed_chat_history.message_time,
"user_message": question.question,
"assistant": "",
"prompt_title": self.prompt_to_use.title
if self.prompt_to_use
else None,
"brain_name": brain.name if brain else None,
}
)
response_tokens = []
async for value in self.make_completion(
messages=messages,
functions=[get_api_brain_definition_as_json_schema(brain)],
brain_id=question.brain_id,
):
streamed_chat_history.assistant = value
response_tokens.append(value)
yield f"data: {json.dumps(streamed_chat_history.dict())}"
response_tokens = [
token
for token in response_tokens
if not token.startswith("🧠<") and not token.endswith(">🧠")
]
chat_service.update_message_by_id(
message_id=str(streamed_chat_history.message_id),
user_message=question.question,
assistant="".join(response_tokens),
)