quivr/backend/models/settings.py

59 lines
1.8 KiB
Python

from langchain.embeddings.openai import OpenAIEmbeddings
from models.databases.supabase.supabase import SupabaseDB
from pydantic import BaseSettings
from supabase.client import Client, create_client
from vectorstore.supabase import SupabaseVectorStore
class BrainRateLimiting(BaseSettings):
max_brain_size: int = 52428800
max_brain_per_user: int = 5
class BrainSettings(BaseSettings):
openai_api_key: str
anthropic_api_key: str
supabase_url: str
supabase_service_key: str
pg_database_url: str = "not implemented"
resend_api_key: str = "null"
resend_email_address: str = "brain@mail.quivr.app"
class LLMSettings(BaseSettings):
private: bool = False
model_path: str = "./local_models/ggml-gpt4all-j-v1.3-groovy.bin"
def get_supabase_client() -> Client:
settings = BrainSettings() # pyright: ignore reportPrivateUsage=none
supabase_client: Client = create_client(
settings.supabase_url, settings.supabase_service_key
)
return supabase_client
def get_supabase_db() -> SupabaseDB:
supabase_client = get_supabase_client()
return SupabaseDB(supabase_client)
def get_embeddings() -> OpenAIEmbeddings:
settings = BrainSettings() # pyright: ignore reportPrivateUsage=none
embeddings = OpenAIEmbeddings(
openai_api_key=settings.openai_api_key
) # pyright: ignore reportPrivateUsage=none
return embeddings
def get_documents_vector_store() -> SupabaseVectorStore:
settings = BrainSettings() # pyright: ignore reportPrivateUsage=none
embeddings = get_embeddings()
supabase_client: Client = create_client(
settings.supabase_url, settings.supabase_service_key
)
documents_vector_store = SupabaseVectorStore(
supabase_client, embeddings, table_name="vectors"
)
return documents_vector_store