quivr/backend/parsers/github.py
MaHDi 8af6d61e76
improve (importing): reorganization of the import structure (#964)
* reorganize import level

* add __init__, reorganize import from __init__

* reorganize import level

* reorganize import level

* fix circular import error by keep the import deep as "from models.settings"

* fix the relative import

* restor unwanted staged files

* add backend/venv and backend/.env to gitignore

* clean importing
2023-08-21 12:25:16 +02:00

86 lines
2.6 KiB
Python

import os
import time
from langchain.document_loaders import GitLoader
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from models import Brain, File
from utils.file import compute_sha1_from_content
from utils.vectors import Neurons
async def process_github(
repo,
enable_summarization,
brain_id,
user_openai_api_key,
):
random_dir_name = os.urandom(16).hex()
dateshort = time.strftime("%Y%m%d")
loader = GitLoader(
clone_url=repo,
repo_path="/tmp/" + random_dir_name,
)
documents = loader.load()
os.system("rm -rf /tmp/" + random_dir_name)
chunk_size = 500
chunk_overlap = 0
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
documents = text_splitter.split_documents(documents)
print(documents[:1])
for doc in documents:
if doc.metadata["file_type"] in [
".pyc",
".png",
".svg",
".env",
".lock",
".gitignore",
".gitmodules",
".gitattributes",
".gitkeep",
".git",
".json",
]:
continue
metadata = {
"file_sha1": compute_sha1_from_content(doc.page_content.encode("utf-8")),
"file_size": len(doc.page_content) * 8,
"file_name": doc.metadata["file_name"],
"chunk_size": chunk_size,
"chunk_overlap": chunk_overlap,
"date": dateshort,
"summarization": "true" if enable_summarization else "false",
}
doc_with_metadata = Document(page_content=doc.page_content, metadata=metadata)
file = File(
file_sha1=compute_sha1_from_content(doc.page_content.encode("utf-8"))
)
file_exists = file.file_already_exists()
if not file_exists:
print(f"Creating entry for file {file.file_sha1} in vectors...")
neurons = Neurons()
created_vector = neurons.create_vector(
doc_with_metadata, user_openai_api_key
)
print("Created vector sids ", created_vector)
print("Created vector for ", doc.metadata["file_name"])
file_exists_in_brain = file.file_already_exists_in_brain(brain_id)
if not file_exists_in_brain:
brain = Brain(id=brain_id)
file.link_file_to_brain(brain)
return {
"message": f"✅ Github with {len(documents)} files has been uploaded.",
"type": "success",
}