quivr/backend/main.py
2023-06-09 23:20:51 +02:00

241 lines
11 KiB
Python

import os
import shutil
import time
from tempfile import SpooledTemporaryFile
import pypandoc
from auth.auth_bearer import JWTBearer
from crawl.crawler import CrawlWebsite
from fastapi import Depends, FastAPI, Request, UploadFile
from llm.qa import get_qa_llm
from llm.summarization import llm_evaluate_summaries
from logger import get_logger
from middlewares.cors import add_cors_middleware
from models.chats import ChatMessage
from models.users import User
from parsers.github import process_github
from utils.file import convert_bytes, get_file_size
from utils.processors import filter_file
from utils.vectors import (CommonsDep, create_user, similarity_search,
update_user_request_count)
logger = get_logger(__name__)
app = FastAPI()
add_cors_middleware(app)
max_brain_size = os.getenv("MAX_BRAIN_SIZE")
max_brain_size_with_own_key = os.getenv("MAX_BRAIN_SIZE_WITH_KEY",209715200)
@app.on_event("startup")
async def startup_event():
pypandoc.download_pandoc()
@app.post("/upload", dependencies=[Depends(JWTBearer())])
async def upload_file(request: Request, commons: CommonsDep, file: UploadFile, enable_summarization: bool = False, credentials: dict = Depends(JWTBearer())):
user = User(email=credentials.get('email', 'none'))
user_vectors_response = commons['supabase'].table("vectors").select(
"name:metadata->>file_name, size:metadata->>file_size", count="exact") \
.filter("user_id", "eq", user.email)\
.execute()
documents = user_vectors_response.data # Access the data from the response
# Convert each dictionary to a tuple of items, then to a set to remove duplicates, and then back to a dictionary
user_unique_vectors = [dict(t) for t in set(tuple(d.items()) for d in documents)]
current_brain_size = sum(float(doc['size']) for doc in user_unique_vectors)
file_size = get_file_size(file)
remaining_free_space = 0
if request.headers.get('Openai-Api-Key'):
remaining_free_space = float(max_brain_size_with_own_key) - (current_brain_size)
else:
remaining_free_space = float(max_brain_size) - (current_brain_size)
if remaining_free_space - file_size < 0:
message = {"message": f"❌ User's brain will exceed maximum capacity with this upload. Maximum file allowed is : {convert_bytes(remaining_free_space)}", "type": "error"}
else:
message = await filter_file(file, enable_summarization, commons['supabase'], user)
return message
@app.post("/chat/", dependencies=[Depends(JWTBearer())])
async def chat_endpoint(request: Request, commons: CommonsDep, chat_message: ChatMessage, credentials: dict = Depends(JWTBearer())):
user = User(email=credentials.get('email', 'none'))
date = time.strftime("%Y%m%d")
max_requests_number = os.getenv("MAX_REQUESTS_NUMBER")
user_openai_api_key = request.headers.get('Openai-Api-Key')
response = commons['supabase'].from_('users').select(
'*').filter("user_id", "eq", user.email).filter("date", "eq", date).execute()
userItem = next(iter(response.data or []), {"requests_count": 0})
old_request_count = userItem['requests_count']
history = chat_message.history
history.append(("user", chat_message.question))
qa = get_qa_llm(chat_message, user.email, user_openai_api_key)
if user_openai_api_key is None:
if old_request_count == 0:
create_user(user_id= user.email, date=date)
elif old_request_count < float(max_requests_number) :
update_user_request_count(user_id=user.email, date=date, requests_count= old_request_count+1)
else:
history.append(('assistant', "You have reached your requests limit"))
return {"history": history }
if chat_message.use_summarization:
# 1. get summaries from the vector store based on question
summaries = similarity_search(
chat_message.question, table='match_summaries')
# 2. evaluate summaries against the question
evaluations = llm_evaluate_summaries(
chat_message.question, summaries, chat_message.model)
# 3. pull in the top documents from summaries
logger.info('Evaluations: %s', evaluations)
if evaluations:
reponse = commons['supabase'].from_('vectors').select(
'*').in_('id', values=[e['document_id'] for e in evaluations]).execute()
# 4. use top docs as additional context
additional_context = '---\nAdditional Context={}'.format(
'---\n'.join(data['content'] for data in reponse.data)
) + '\n'
model_response = qa(
{"question": additional_context + chat_message.question})
else:
model_response = qa({"question": chat_message.question})
history.append(("assistant", model_response["answer"]))
return {"history": history}
@app.post("/crawl/", dependencies=[Depends(JWTBearer())])
async def crawl_endpoint(request: Request,commons: CommonsDep, crawl_website: CrawlWebsite, enable_summarization: bool = False, credentials: dict = Depends(JWTBearer())):
max_brain_size = os.getenv("MAX_BRAIN_SIZE")
if request.headers.get('Openai-Api-Key'):
max_brain_size = os.getenv("MAX_BRAIN_SIZE_WITH_KEY",209715200)
user = User(email=credentials.get('email', 'none'))
user_vectors_response = commons['supabase'].table("vectors").select(
"name:metadata->>file_name, size:metadata->>file_size", count="exact") \
.filter("user_id", "eq", user.email)\
.execute()
documents = user_vectors_response.data # Access the data from the response
# Convert each dictionary to a tuple of items, then to a set to remove duplicates, and then back to a dictionary
user_unique_vectors = [dict(t) for t in set(tuple(d.items()) for d in documents)]
current_brain_size = sum(float(doc['size']) for doc in user_unique_vectors)
file_size = 1000000
remaining_free_space = float(max_brain_size) - (current_brain_size)
if remaining_free_space - file_size < 0:
message = {"message": f"❌ User's brain will exceed maximum capacity with this upload. Maximum file allowed is : {convert_bytes(remaining_free_space)}", "type": "error"}
else:
user = User(email=credentials.get('email', 'none'))
if not crawl_website.checkGithub():
file_path, file_name = crawl_website.process()
# Create a SpooledTemporaryFile from the file_path
spooled_file = SpooledTemporaryFile()
with open(file_path, 'rb') as f:
shutil.copyfileobj(f, spooled_file)
# Pass the SpooledTemporaryFile to UploadFile
file = UploadFile(file=spooled_file, filename=file_name)
message = await filter_file(file, enable_summarization, commons['supabase'], user=user)
return message
else:
message = await process_github(crawl_website.url, "false", user=user, supabase=commons['supabase'])
@app.get("/explore", dependencies=[Depends(JWTBearer())])
async def explore_endpoint(commons: CommonsDep,credentials: dict = Depends(JWTBearer()) ):
user = User(email=credentials.get('email', 'none'))
response = commons['supabase'].table("vectors").select(
"name:metadata->>file_name, size:metadata->>file_size", count="exact").filter("user_id", "eq", user.email).execute()
documents = response.data # Access the data from the response
# Convert each dictionary to a tuple of items, then to a set to remove duplicates, and then back to a dictionary
unique_data = [dict(t) for t in set(tuple(d.items()) for d in documents)]
# Sort the list of documents by size in decreasing order
unique_data.sort(key=lambda x: int(x['size']), reverse=True)
return {"documents": unique_data}
@app.delete("/explore/{file_name}", dependencies=[Depends(JWTBearer())])
async def delete_endpoint(commons: CommonsDep, file_name: str, credentials: dict = Depends(JWTBearer())):
user = User(email=credentials.get('email', 'none'))
# Cascade delete the summary from the database first, because it has a foreign key constraint
commons['supabase'].table("summaries").delete().match(
{"metadata->>file_name": file_name}).execute()
commons['supabase'].table("vectors").delete().match(
{"metadata->>file_name": file_name, "user_id": user.email}).execute()
return {"message": f"{file_name} of user {user.email} has been deleted."}
@app.get("/explore/{file_name}", dependencies=[Depends(JWTBearer())])
async def download_endpoint(commons: CommonsDep, file_name: str,credentials: dict = Depends(JWTBearer()) ):
user = User(email=credentials.get('email', 'none'))
response = commons['supabase'].table("vectors").select(
"metadata->>file_name, metadata->>file_size, metadata->>file_extension, metadata->>file_url", "content").match({"metadata->>file_name": file_name, "user_id": user.email}).execute()
documents = response.data
# Returns all documents with the same file name
return {"documents": documents}
@app.get("/user", dependencies=[Depends(JWTBearer())])
async def get_user_endpoint(request: Request, commons: CommonsDep, credentials: dict = Depends(JWTBearer())):
# Create a function that returns the unique documents out of the vectors
# Create a function that returns the list of documents that can take in what to put in the select + the filter
user = User(email=credentials.get('email', 'none'))
# Cascade delete the summary from the database first, because it has a foreign key constraint
user_vectors_response = commons['supabase'].table("vectors").select(
"name:metadata->>file_name, size:metadata->>file_size", count="exact") \
.filter("user_id", "eq", user.email)\
.execute()
documents = user_vectors_response.data # Access the data from the response
# Convert each dictionary to a tuple of items, then to a set to remove duplicates, and then back to a dictionary
user_unique_vectors = [dict(t) for t in set(tuple(d.items()) for d in documents)]
current_brain_size = sum(float(doc['size']) for doc in user_unique_vectors)
max_brain_size = os.getenv("MAX_BRAIN_SIZE")
if request.headers.get('Openai-Api-Key'):
max_brain_size = max_brain_size_with_own_key
# Create function get user request stats -> nombre de requetes par jour + max number of requests -> svg to display the number of requests ? une fusee ?
user = User(email=credentials.get('email', 'none'))
date = time.strftime("%Y%m%d")
max_requests_number = os.getenv("MAX_REQUESTS_NUMBER")
if request.headers.get('Openai-Api-Key'):
max_requests_number = 1000000
requests_stats = commons['supabase'].from_('users').select(
'*').filter("user_id", "eq", user.email).execute()
return {"email":user.email,
"max_brain_size": max_brain_size,
"current_brain_size": current_brain_size,
"max_requests_number": max_requests_number,
"requests_stats" : requests_stats.data,
"date": date,
}
@app.get("/")
async def root():
return {"status": "OK"}