mirror of
https://github.com/StanGirard/quivr.git
synced 2024-12-18 16:11:45 +03:00
72c92b1a54
* feat(bard): added * docs(readme): update * chore(print): removed
106 lines
4.3 KiB
Python
106 lines
4.3 KiB
Python
import os
|
|
from typing import Any, List
|
|
|
|
from langchain.chains import ConversationalRetrievalChain
|
|
from langchain.chat_models import ChatOpenAI, ChatVertexAI
|
|
from langchain.chat_models.anthropic import ChatAnthropic
|
|
from langchain.docstore.document import Document
|
|
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
from langchain.llms import VertexAI
|
|
from langchain.memory import ConversationBufferMemory
|
|
from langchain.vectorstores import SupabaseVectorStore
|
|
from llm import LANGUAGE_PROMPT
|
|
from supabase import Client, create_client
|
|
from utils import ChatMessage
|
|
|
|
|
|
class CustomSupabaseVectorStore(SupabaseVectorStore):
|
|
'''A custom vector store that uses the match_vectors table instead of the vectors table.'''
|
|
user_id: str
|
|
def __init__(self, client: Client, embedding: OpenAIEmbeddings, table_name: str, user_id: str = "none"):
|
|
super().__init__(client, embedding, table_name)
|
|
self.user_id = user_id
|
|
|
|
def similarity_search(
|
|
self,
|
|
query: str,
|
|
user_id: str = "none",
|
|
table: str = "match_vectors",
|
|
k: int = 4,
|
|
threshold: float = 0.5,
|
|
**kwargs: Any
|
|
) -> List[Document]:
|
|
vectors = self._embedding.embed_documents([query])
|
|
query_embedding = vectors[0]
|
|
res = self._client.rpc(
|
|
table,
|
|
{
|
|
"query_embedding": query_embedding,
|
|
"match_count": k,
|
|
"p_user_id": self.user_id,
|
|
},
|
|
).execute()
|
|
|
|
match_result = [
|
|
(
|
|
Document(
|
|
metadata=search.get("metadata", {}), # type: ignore
|
|
page_content=search.get("content", ""),
|
|
),
|
|
search.get("similarity", 0.0),
|
|
)
|
|
for search in res.data
|
|
if search.get("content")
|
|
]
|
|
|
|
documents = [doc for doc, _ in match_result]
|
|
|
|
return documents
|
|
|
|
def get_environment_variables():
|
|
'''Get the environment variables.'''
|
|
openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
|
|
supabase_url = os.getenv("SUPABASE_URL")
|
|
supabase_key = os.getenv("SUPABASE_SERVICE_KEY")
|
|
|
|
return openai_api_key, anthropic_api_key, supabase_url, supabase_key
|
|
|
|
def create_clients_and_embeddings(openai_api_key, supabase_url, supabase_key):
|
|
'''Create the clients and embeddings.'''
|
|
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
|
supabase_client = create_client(supabase_url, supabase_key)
|
|
|
|
return supabase_client, embeddings
|
|
|
|
def get_qa_llm(chat_message: ChatMessage, user_id: str):
|
|
'''Get the question answering language model.'''
|
|
openai_api_key, anthropic_api_key, supabase_url, supabase_key = get_environment_variables()
|
|
supabase_client, embeddings = create_clients_and_embeddings(openai_api_key, supabase_url, supabase_key)
|
|
|
|
vector_store = CustomSupabaseVectorStore(
|
|
supabase_client, embeddings, table_name="vectors", user_id=user_id)
|
|
memory = ConversationBufferMemory(
|
|
memory_key="chat_history", return_messages=True)
|
|
|
|
ConversationalRetrievalChain.prompts = LANGUAGE_PROMPT
|
|
|
|
qa = None
|
|
# this overwrites the built-in prompt of the ConversationalRetrievalChain
|
|
ConversationalRetrievalChain.prompts = LANGUAGE_PROMPT
|
|
if chat_message.model.startswith("gpt"):
|
|
qa = ConversationalRetrievalChain.from_llm(
|
|
ChatOpenAI(
|
|
model_name=chat_message.model, openai_api_key=openai_api_key,
|
|
temperature=chat_message.temperature, max_tokens=chat_message.max_tokens),
|
|
vector_store.as_retriever(), memory=memory, verbose=True,
|
|
max_tokens_limit=1024)
|
|
elif chat_message.model.startswith("vertex"):
|
|
qa = ConversationalRetrievalChain.from_llm(
|
|
ChatVertexAI(), vector_store.as_retriever(), memory=memory, verbose=False, max_tokens_limit=1024)
|
|
elif anthropic_api_key and chat_message.model.startswith("claude"):
|
|
qa = ConversationalRetrievalChain.from_llm(
|
|
ChatAnthropic(
|
|
model=chat_message.model, anthropic_api_key=anthropic_api_key, temperature=chat_message.temperature, max_tokens_to_sample=chat_message.max_tokens), vector_store.as_retriever(), memory=memory, verbose=False, max_tokens_limit=102400)
|
|
return qa
|