quivr/streamlit-demo/loaders/common.py
Stan Girard f952d7a269
New Webapp migration (#56)
* feat(v2): loaders added

* feature: Add scroll animations

* feature: upload ui

* feature: upload multiple files

* fix: Same file name and size remove

* feat(crawler): added

* feat(parsers): v2 added more

* feat(v2): audio now working

* feat(v2): all loaders

* feat(v2): explorer

* chore: add links

* feat(api): added status in return message

* refactor(website): remove old code

* feat(upload): return type for messages

* feature: redirect to upload if ENV=local

* fix(chat): fixed some issues

* feature: respect response type

* loading state

* feature: Loading stat

* feat(v2): added explore and chat pages

* feature: modal settings

* style: Chat UI

* feature: scroll to bottom when chatting

* feature: smooth scroll in chat

* feature(anim): Slide chat in

* feature: markdown chat

* feat(explorer): list

* feat(doc): added document item

* feat(explore): added modal

* Add clarification on Project API keys and web interface for migration scripts to Readme (#58)

* fix(demo): changed link

* add support to uploading zip file (#62)

* Catch UnicodeEncodeError exception (#64)

* feature: fixed chatbar

* fix(loaders): missing argument

* fix: layout

* fix: One whole chatbox

* fix: Scroll into view

* fix(build): vercel issues

* chore(streamlit): moved to own file

* refactor(api): moved to backend folder

* feat(docker): added docker compose

* Fix a bug where langchain memories were not being cleaned (#71)

* Update README.md (#70)

* chore(streamlit): moved to own file

* refactor(api): moved to backend folder

* docs(readme): updated for new version

* docs(readme): added old readme

* docs(readme): update copy dot env file

* docs(readme): cleanup

---------

Co-authored-by: iMADi-ARCH <nandanaditya985@gmail.com>
Co-authored-by: Matt LeBel <github@lebel.io>
Co-authored-by: Evan Carlson <45178375+EvanCarlson@users.noreply.github.com>
Co-authored-by: Mustafa Hasan Khan <65130881+mustafahasankhan@users.noreply.github.com>
Co-authored-by: zhulixi <48713110+zlxxlz1026@users.noreply.github.com>
Co-authored-by: Stanisław Tuszyński <stanislaw@tuszynski.me>
2023-05-21 01:20:55 +02:00

43 lines
1.7 KiB
Python

import tempfile
import time
import os
from utils import compute_sha1_from_file
from langchain.schema import Document
import streamlit as st
from langchain.text_splitter import RecursiveCharacterTextSplitter
from stats import add_usage
def process_file(vector_store, file, loader_class, file_suffix, stats_db=None):
documents = []
file_name = file.name
file_size = file.size
if st.secrets.self_hosted == "false":
if file_size > 1000000:
st.error("File size is too large. Please upload a file smaller than 1MB or self host.")
return
dateshort = time.strftime("%Y%m%d")
with tempfile.NamedTemporaryFile(delete=False, suffix=file_suffix) as tmp_file:
tmp_file.write(file.getvalue())
tmp_file.flush()
loader = loader_class(tmp_file.name)
documents = loader.load()
file_sha1 = compute_sha1_from_file(tmp_file.name)
os.remove(tmp_file.name)
chunk_size = st.session_state['chunk_size']
chunk_overlap = st.session_state['chunk_overlap']
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
documents = text_splitter.split_documents(documents)
# Add the document sha1 as metadata to each document
docs_with_metadata = [Document(page_content=doc.page_content, metadata={"file_sha1": file_sha1,"file_size":file_size ,"file_name": file_name, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "date": dateshort}) for doc in documents]
vector_store.add_documents(docs_with_metadata)
if stats_db:
add_usage(stats_db, "embedding", "file", metadata={"file_name": file_name,"file_type": file_suffix, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap})