mirror of
https://github.com/StanGirard/quivr.git
synced 2024-12-27 13:22:44 +03:00
76 lines
2.6 KiB
Python
76 lines
2.6 KiB
Python
import streamlit as st
|
|
from streamlit.runtime.uploaded_file_manager import UploadedFile, UploadedFileRec
|
|
import os
|
|
from loaders.audio import process_audio
|
|
from loaders.txt import process_txt
|
|
from loaders.csv import process_csv
|
|
from loaders.markdown import process_markdown
|
|
from loaders.html import process_html
|
|
from utils import compute_sha1_from_content
|
|
from loaders.pdf import process_pdf
|
|
from loaders.html import get_html, create_html_file, delete_tempfile
|
|
import requests
|
|
import re
|
|
import unicodedata
|
|
import tempfile
|
|
|
|
file_processors = {
|
|
".txt": process_txt,
|
|
".csv": process_csv,
|
|
".md": process_markdown,
|
|
".markdown": process_markdown,
|
|
".m4a": process_audio,
|
|
".mp3": process_audio,
|
|
".webm": process_audio,
|
|
".mp4": process_audio,
|
|
".mpga": process_audio,
|
|
".wav": process_audio,
|
|
".mpeg": process_audio,
|
|
".pdf": process_pdf,
|
|
".html": process_html,
|
|
}
|
|
|
|
def file_uploader(supabase, openai_key, vector_store):
|
|
files = st.file_uploader("**Upload a file**", accept_multiple_files=True, type=list(file_processors.keys()))
|
|
if st.button("Add to Database"):
|
|
if files is not None:
|
|
for file in files:
|
|
filter_file(file, supabase, vector_store)
|
|
|
|
def file_already_exists(supabase, file):
|
|
file_sha1 = compute_sha1_from_content(file.getvalue())
|
|
response = supabase.table("documents").select("id").eq("metadata->>file_sha1", file_sha1).execute()
|
|
return len(response.data) > 0
|
|
|
|
def filter_file(file, supabase, vector_store):
|
|
if file_already_exists(supabase, file):
|
|
st.write(f"😎 {file.name} is already in the database.")
|
|
return False
|
|
elif file.size < 1:
|
|
st.write(f"💨 {file.name} is empty.")
|
|
return False
|
|
else:
|
|
file_extension = os.path.splitext(file.name)[-1]
|
|
print(file.name, file_extension)
|
|
if file_extension in file_processors:
|
|
file_processors[file_extension](vector_store, file)
|
|
st.write(f"✅ {file.name} ")
|
|
return True
|
|
else:
|
|
st.write(f"❌ {file.name} is not a valid file type.")
|
|
return False
|
|
|
|
def url_uploader(supabase, openai_key, vector_store):
|
|
url = st.text_area("## Add an url",placeholder="https://www.quivr.app")
|
|
button = st.button("Add the URL to the database")
|
|
if button:
|
|
html = get_html(url)
|
|
if html:
|
|
st.write(f"Getting content ... {url} ")
|
|
file, temp_file_path = create_html_file(url, html)
|
|
ret = filter_file(file, supabase, vector_store)
|
|
delete_tempfile(temp_file_path, url, ret)
|
|
else:
|
|
st.write(f"❌ Failed to access to {url} .")
|
|
|