quivr/loaders/common.py
2023-05-19 23:13:46 +02:00

43 lines
1.7 KiB
Python

import tempfile
import time
import os
from utils import compute_sha1_from_file
from langchain.schema import Document
import streamlit as st
from langchain.text_splitter import RecursiveCharacterTextSplitter
from stats import add_usage
def process_file(vector_store, file, loader_class, file_suffix, stats_db=None):
documents = []
file_name = file.name
file_size = file.size
if st.secrets.self_hosted == "false":
if file_size > 1000000:
st.error("File size is too large. Please upload a file smaller than 1MB or self host.")
return
dateshort = time.strftime("%Y%m%d")
with tempfile.NamedTemporaryFile(delete=False, suffix=file_suffix) as tmp_file:
tmp_file.write(file.getvalue())
tmp_file.flush()
loader = loader_class(tmp_file.name)
documents = loader.load()
file_sha1 = compute_sha1_from_file(tmp_file.name)
os.remove(tmp_file.name)
chunk_size = st.session_state['chunk_size']
chunk_overlap = st.session_state['chunk_overlap']
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
documents = text_splitter.split_documents(documents)
# Add the document sha1 as metadata to each document
docs_with_metadata = [Document(page_content=doc.page_content, metadata={"file_sha1": file_sha1,"file_size":file_size ,"file_name": file_name, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "date": dateshort}) for doc in documents]
vector_store.add_documents(docs_with_metadata)
if stats_db:
add_usage(stats_db, "embedding", "file", metadata={"file_name": file_name,"file_type": file_suffix, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap})