mirror of
https://github.com/StanGirard/quivr.git
synced 2025-01-07 03:27:39 +03:00
80 lines
3.2 KiB
Python
80 lines
3.2 KiB
Python
import anthropic
|
|
import streamlit as st
|
|
from streamlit.logger import get_logger
|
|
from langchain.chains import ConversationalRetrievalChain
|
|
from langchain.memory import ConversationBufferMemory
|
|
from langchain.llms import OpenAI
|
|
from langchain.chat_models import ChatAnthropic
|
|
from langchain.vectorstores import SupabaseVectorStore
|
|
from stats import add_usage
|
|
|
|
memory = ConversationBufferMemory(
|
|
memory_key="chat_history", return_messages=True)
|
|
openai_api_key = st.secrets.openai_api_key
|
|
anthropic_api_key = st.secrets.anthropic_api_key
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
def count_tokens(question, model):
|
|
count = f'Words: {len(question.split())}'
|
|
if model.startswith("claude"):
|
|
count += f' | Tokens: {anthropic.count_tokens(question)}'
|
|
return count
|
|
|
|
|
|
def chat_with_doc(model, vector_store: SupabaseVectorStore, stats_db):
|
|
|
|
if 'chat_history' not in st.session_state:
|
|
st.session_state['chat_history'] = []
|
|
|
|
|
|
|
|
question = st.text_area("## Ask a question")
|
|
columns = st.columns(3)
|
|
with columns[0]:
|
|
button = st.button("Ask")
|
|
with columns[1]:
|
|
count_button = st.button("Count Tokens", type='secondary')
|
|
with columns[2]:
|
|
clear_history = st.button("Clear History", type='secondary')
|
|
|
|
|
|
|
|
if clear_history:
|
|
st.session_state['chat_history'] = []
|
|
st.experimental_rerun()
|
|
|
|
if button:
|
|
qa = None
|
|
if not st.session_state["overused"]:
|
|
add_usage(stats_db, "chat", "prompt" + question, {"model": model, "temperature": st.session_state['temperature']})
|
|
if model.startswith("gpt"):
|
|
logger.info('Using OpenAI model %s', model)
|
|
qa = ConversationalRetrievalChain.from_llm(
|
|
OpenAI(
|
|
model_name=st.session_state['model'], openai_api_key=openai_api_key, temperature=st.session_state['temperature'], max_tokens=st.session_state['max_tokens']), vector_store.as_retriever(), memory=memory, verbose=True)
|
|
elif anthropic_api_key and model.startswith("claude"):
|
|
logger.info('Using Anthropics model %s', model)
|
|
qa = ConversationalRetrievalChain.from_llm(
|
|
ChatAnthropic(
|
|
model=st.session_state['model'], anthropic_api_key=anthropic_api_key, temperature=st.session_state['temperature'], max_tokens_to_sample=st.session_state['max_tokens']), vector_store.as_retriever(), memory=memory, verbose=True, max_tokens_limit=102400)
|
|
|
|
|
|
st.session_state['chat_history'].append(("You", question))
|
|
|
|
# Generate model's response and add it to chat history
|
|
model_response = qa({"question": question})
|
|
logger.info('Result: %s', model_response)
|
|
|
|
st.session_state['chat_history'].append(("Quivr", model_response["answer"]))
|
|
|
|
# Display chat history
|
|
st.empty()
|
|
for speaker, text in st.session_state['chat_history']:
|
|
st.markdown(f"**{speaker}:** {text}")
|
|
else:
|
|
st.error("You have used all your free credits. Please try again later or self host.")
|
|
|
|
if count_button:
|
|
st.write(count_tokens(question, model))
|