mirror of
https://github.com/StanGirard/quivr.git
synced 2024-12-26 04:42:31 +03:00
8af6d61e76
* reorganize import level * add __init__, reorganize import from __init__ * reorganize import level * reorganize import level * fix circular import error by keep the import deep as "from models.settings" * fix the relative import * restor unwanted staged files * add backend/venv and backend/.env to gitignore * clean importing
210 lines
7.1 KiB
Python
210 lines
7.1 KiB
Python
import asyncio
|
|
import json
|
|
from uuid import UUID
|
|
|
|
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
|
|
from langchain.chat_models import ChatOpenAI
|
|
from langchain.chains import LLMChain
|
|
from langchain.llms.base import BaseLLM
|
|
from langchain.prompts.chat import (
|
|
ChatPromptTemplate,
|
|
HumanMessagePromptTemplate,
|
|
)
|
|
from models.databases.supabase.chats import CreateChatHistory
|
|
from repository.chat import (
|
|
update_message_by_id,
|
|
format_chat_history,
|
|
get_chat_history,
|
|
update_chat_history,
|
|
format_history_to_openai_mesages,
|
|
GetChatHistoryOutput,
|
|
)
|
|
from logger import get_logger
|
|
from models import ChatQuestion
|
|
|
|
|
|
from pydantic import BaseModel
|
|
|
|
from typing import AsyncIterable, Awaitable, List
|
|
|
|
logger = get_logger(__name__)
|
|
SYSTEM_MESSAGE = "Your name is Quivr. You're a helpful assistant. If you don't know the answer, just say that you don't know, don't try to make up an answer."
|
|
|
|
|
|
class HeadlessQA(BaseModel):
|
|
model: str = None # type: ignore
|
|
temperature: float = 0.0
|
|
max_tokens: int = 256
|
|
user_openai_api_key: str = None # type: ignore
|
|
openai_api_key: str = None # type: ignore
|
|
streaming: bool = False
|
|
chat_id: str = None # type: ignore
|
|
callbacks: List[AsyncIteratorCallbackHandler] = None # type: ignore
|
|
|
|
def _determine_api_key(self, openai_api_key, user_openai_api_key):
|
|
"""If user provided an API key, use it."""
|
|
if user_openai_api_key is not None:
|
|
return user_openai_api_key
|
|
else:
|
|
return openai_api_key
|
|
|
|
def _determine_streaming(self, model: str, streaming: bool) -> bool:
|
|
"""If the model name allows for streaming and streaming is declared, set streaming to True."""
|
|
return streaming
|
|
|
|
def _determine_callback_array(
|
|
self, streaming
|
|
) -> List[AsyncIteratorCallbackHandler]: # pyright: ignore reportPrivateUsage=none
|
|
"""If streaming is set, set the AsyncIteratorCallbackHandler as the only callback."""
|
|
if streaming:
|
|
return [
|
|
AsyncIteratorCallbackHandler() # pyright: ignore reportPrivateUsage=none
|
|
]
|
|
|
|
def __init__(self, **data):
|
|
super().__init__(**data)
|
|
|
|
self.openai_api_key = self._determine_api_key(
|
|
self.openai_api_key, self.user_openai_api_key
|
|
)
|
|
self.streaming = self._determine_streaming(
|
|
self.model, self.streaming
|
|
) # pyright: ignore reportPrivateUsage=none
|
|
self.callbacks = self._determine_callback_array(
|
|
self.streaming
|
|
) # pyright: ignore reportPrivateUsage=none
|
|
|
|
def _create_llm(
|
|
self, model, temperature=0, streaming=False, callbacks=None
|
|
) -> BaseLLM:
|
|
"""
|
|
Determine the language model to be used.
|
|
:param model: Language model name to be used.
|
|
:param streaming: Whether to enable streaming of the model
|
|
:param callbacks: Callbacks to be used for streaming
|
|
:return: Language model instance
|
|
"""
|
|
return ChatOpenAI(
|
|
temperature=temperature,
|
|
model=model,
|
|
streaming=streaming,
|
|
verbose=True,
|
|
callbacks=callbacks,
|
|
openai_api_key=self.openai_api_key,
|
|
) # pyright: ignore reportPrivateUsage=none
|
|
|
|
def _create_prompt_template(self):
|
|
messages = [
|
|
HumanMessagePromptTemplate.from_template("{question}"),
|
|
]
|
|
CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
|
|
return CHAT_PROMPT
|
|
|
|
def generate_answer(
|
|
self, chat_id: UUID, question: ChatQuestion
|
|
) -> GetChatHistoryOutput:
|
|
transformed_history = format_chat_history(get_chat_history(self.chat_id))
|
|
messages = format_history_to_openai_mesages(transformed_history, SYSTEM_MESSAGE, question.question)
|
|
answering_llm = self._create_llm(
|
|
model=self.model, streaming=False, callbacks=self.callbacks
|
|
)
|
|
model_prediction = answering_llm.predict_messages(messages) # pyright: ignore reportPrivateUsage=none
|
|
answer = model_prediction.content
|
|
|
|
new_chat = update_chat_history(
|
|
CreateChatHistory(
|
|
**{
|
|
"chat_id": chat_id,
|
|
"user_message": question.question,
|
|
"assistant": answer,
|
|
"brain_id": None,
|
|
"prompt_id": None,
|
|
}
|
|
)
|
|
)
|
|
|
|
return GetChatHistoryOutput(
|
|
**{
|
|
"chat_id": chat_id,
|
|
"user_message": question.question,
|
|
"assistant": answer,
|
|
"message_time": new_chat.message_time,
|
|
"prompt_title": None,
|
|
"brain_name": None,
|
|
"message_id": new_chat.message_id,
|
|
}
|
|
)
|
|
|
|
async def generate_stream(
|
|
self, chat_id: UUID, question: ChatQuestion
|
|
) -> AsyncIterable:
|
|
callback = AsyncIteratorCallbackHandler()
|
|
self.callbacks = [callback]
|
|
|
|
transformed_history = format_chat_history(get_chat_history(self.chat_id))
|
|
messages = format_history_to_openai_mesages(transformed_history, SYSTEM_MESSAGE, question.question)
|
|
answering_llm = self._create_llm(
|
|
model=self.model, streaming=True, callbacks=self.callbacks
|
|
)
|
|
|
|
CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
|
|
headlessChain = LLMChain(llm=answering_llm, prompt=CHAT_PROMPT)
|
|
|
|
response_tokens = []
|
|
|
|
async def wrap_done(fn: Awaitable, event: asyncio.Event):
|
|
try:
|
|
await fn
|
|
except Exception as e:
|
|
logger.error(f"Caught exception: {e}")
|
|
finally:
|
|
event.set()
|
|
run = asyncio.create_task(
|
|
wrap_done(
|
|
headlessChain.acall({}),
|
|
callback.done,
|
|
),
|
|
)
|
|
|
|
streamed_chat_history = update_chat_history(
|
|
CreateChatHistory(
|
|
**{
|
|
"chat_id": chat_id,
|
|
"user_message": question.question,
|
|
"assistant": "",
|
|
"brain_id": None,
|
|
"prompt_id": None,
|
|
}
|
|
)
|
|
)
|
|
|
|
streamed_chat_history = GetChatHistoryOutput(
|
|
**{
|
|
"chat_id": str(chat_id),
|
|
"message_id": streamed_chat_history.message_id,
|
|
"message_time": streamed_chat_history.message_time,
|
|
"user_message": question.question,
|
|
"assistant": "",
|
|
"prompt_title": None,
|
|
"brain_name": None,
|
|
}
|
|
)
|
|
|
|
async for token in callback.aiter():
|
|
logger.info("Token: %s", token) # type: ignore
|
|
response_tokens.append(token) # type: ignore
|
|
streamed_chat_history.assistant = token # type: ignore
|
|
yield f"data: {json.dumps(streamed_chat_history.dict())}"
|
|
|
|
await run
|
|
assistant = "".join(response_tokens)
|
|
|
|
update_message_by_id(
|
|
message_id=str(streamed_chat_history.message_id),
|
|
user_message=question.question,
|
|
assistant=assistant,
|
|
)
|
|
|
|
class Config:
|
|
arbitrary_types_allowed = True
|