mirror of
https://github.com/StanGirard/quivr.git
synced 2024-12-21 02:11:35 +03:00
a3ca7ecb37
* feat(docker): added docker for prod * feat(refacto): moved to modules
93 lines
3.0 KiB
Python
93 lines
3.0 KiB
Python
import os
|
|
from typing import Annotated, List, Tuple
|
|
|
|
from fastapi import Depends, UploadFile
|
|
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
from langchain.schema import Document
|
|
from langchain.vectorstores import SupabaseVectorStore
|
|
from llm.summarization import llm_summerize
|
|
from logger import get_logger
|
|
from pydantic import BaseModel
|
|
from supabase import Client, create_client
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
openai_api_key = os.environ.get("OPENAI_API_KEY")
|
|
anthropic_api_key = os.environ.get("ANTHROPIC_API_KEY")
|
|
supabase_url = os.environ.get("SUPABASE_URL")
|
|
supabase_key = os.environ.get("SUPABASE_SERVICE_KEY")
|
|
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
|
supabase_client: Client = create_client(supabase_url, supabase_key)
|
|
documents_vector_store = SupabaseVectorStore(
|
|
supabase_client, embeddings, table_name="vectors")
|
|
summaries_vector_store = SupabaseVectorStore(
|
|
supabase_client, embeddings, table_name="summaries")
|
|
|
|
|
|
|
|
|
|
|
|
def common_dependencies():
|
|
return {
|
|
"supabase": supabase_client,
|
|
"embeddings": embeddings,
|
|
"documents_vector_store": documents_vector_store,
|
|
"summaries_vector_store": summaries_vector_store
|
|
}
|
|
|
|
|
|
CommonsDep = Annotated[dict, Depends(common_dependencies)]
|
|
|
|
|
|
|
|
|
|
def create_summary(document_id, content, metadata):
|
|
logger.info(f"Summarizing document {content[:100]}")
|
|
summary = llm_summerize(content)
|
|
logger.info(f"Summary: {summary}")
|
|
metadata['document_id'] = document_id
|
|
summary_doc_with_metadata = Document(
|
|
page_content=summary, metadata=metadata)
|
|
sids = summaries_vector_store.add_documents(
|
|
[summary_doc_with_metadata])
|
|
if sids and len(sids) > 0:
|
|
supabase_client.table("summaries").update(
|
|
{"document_id": document_id}).match({"id": sids[0]}).execute()
|
|
|
|
def create_vector(user_id,doc):
|
|
logger.info(f"Creating vector for document")
|
|
logger.info(f"Document: {doc}")
|
|
sids = documents_vector_store.add_documents(
|
|
[doc])
|
|
if sids and len(sids) > 0:
|
|
supabase_client.table("vectors").update(
|
|
{"user_id": user_id}).match({"id": sids[0]}).execute()
|
|
|
|
def create_user(user_id, date):
|
|
logger.info(f"New user entry in db document for user {user_id}")
|
|
supabase_client.table("users").insert(
|
|
{"user_id": user_id, "date": date, "requests_count": 1}).execute()
|
|
|
|
def update_user_request_count(user_id, date, requests_count):
|
|
logger.info(f"User {user_id} request count updated to {requests_count}")
|
|
supabase_client.table("users").update(
|
|
{ "requests_count": requests_count}).match({"user_id": user_id, "date": date}).execute()
|
|
|
|
|
|
def create_embedding(content):
|
|
return embeddings.embed_query(content)
|
|
|
|
|
|
|
|
def similarity_search(query, table='match_summaries', top_k=5, threshold=0.5):
|
|
query_embedding = create_embedding(query)
|
|
summaries = supabase_client.rpc(
|
|
table, {'query_embedding': query_embedding,
|
|
'match_count': top_k, 'match_threshold': threshold}
|
|
).execute()
|
|
return summaries.data
|
|
|
|
|
|
|