mirror of
https://github.com/StanGirard/quivr.git
synced 2025-01-05 18:57:48 +03:00
59 lines
1.8 KiB
Python
59 lines
1.8 KiB
Python
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
from models.databases.supabase.supabase import SupabaseDB
|
|
from pydantic import BaseSettings
|
|
from supabase.client import Client, create_client
|
|
from vectorstore.supabase import SupabaseVectorStore
|
|
|
|
|
|
class BrainRateLimiting(BaseSettings):
|
|
max_brain_size: int = 52428800
|
|
max_brain_per_user: int = 5
|
|
|
|
|
|
class BrainSettings(BaseSettings):
|
|
openai_api_key: str
|
|
anthropic_api_key: str
|
|
supabase_url: str
|
|
supabase_service_key: str
|
|
pg_database_url: str = "not implemented"
|
|
resend_api_key: str = "null"
|
|
resend_email_address: str = "brain@mail.quivr.app"
|
|
|
|
|
|
class LLMSettings(BaseSettings):
|
|
private: bool = False
|
|
model_path: str = "./local_models/ggml-gpt4all-j-v1.3-groovy.bin"
|
|
|
|
|
|
def get_supabase_client() -> Client:
|
|
settings = BrainSettings() # pyright: ignore reportPrivateUsage=none
|
|
supabase_client: Client = create_client(
|
|
settings.supabase_url, settings.supabase_service_key
|
|
)
|
|
return supabase_client
|
|
|
|
|
|
def get_supabase_db() -> SupabaseDB:
|
|
supabase_client = get_supabase_client()
|
|
return SupabaseDB(supabase_client)
|
|
|
|
|
|
def get_embeddings() -> OpenAIEmbeddings:
|
|
settings = BrainSettings() # pyright: ignore reportPrivateUsage=none
|
|
embeddings = OpenAIEmbeddings(
|
|
openai_api_key=settings.openai_api_key
|
|
) # pyright: ignore reportPrivateUsage=none
|
|
return embeddings
|
|
|
|
|
|
def get_documents_vector_store() -> SupabaseVectorStore:
|
|
settings = BrainSettings() # pyright: ignore reportPrivateUsage=none
|
|
embeddings = get_embeddings()
|
|
supabase_client: Client = create_client(
|
|
settings.supabase_url, settings.supabase_service_key
|
|
)
|
|
documents_vector_store = SupabaseVectorStore(
|
|
supabase_client, embeddings, table_name="vectors"
|
|
)
|
|
return documents_vector_store
|