quivr/backend/core/utils/vectors.py
Stan Girard db40f3cccd
feat(llm): removing all llms to prepare for genoss (#804)
* feat(routes): removed all except openai

* feat(deadcode): removed some deadcode and summarization feature that wasn't used

* feat(streaming): removed privateGPT from it

* chore(requirements): increased version
2023-07-31 16:01:34 +02:00

108 lines
3.4 KiB
Python

from concurrent.futures import ThreadPoolExecutor
from typing import List
from langchain.embeddings.openai import OpenAIEmbeddings
from logger import get_logger
from models.settings import BrainSettings, CommonsDep, common_dependencies
from pydantic import BaseModel
logger = get_logger(__name__)
class Neurons(BaseModel):
commons: CommonsDep
settings = BrainSettings() # pyright: ignore reportPrivateUsage=none
def create_vector(self, doc, user_openai_api_key=None):
logger.info("Creating vector for document")
logger.info(f"Document: {doc}")
if user_openai_api_key:
self.commons["documents_vector_store"]._embedding = OpenAIEmbeddings(
openai_api_key=user_openai_api_key
) # pyright: ignore reportPrivateUsage=none
try:
sids = self.commons["documents_vector_store"].add_documents([doc])
if sids and len(sids) > 0:
return sids
except Exception as e:
logger.error(f"Error creating vector for document {e}")
def create_embedding(self, content):
return self.commons["embeddings"].embed_query(content)
def similarity_search(self, query, table="match_summaries", top_k=5, threshold=0.5):
query_embedding = self.create_embedding(query)
summaries = (
self.commons["supabase"]
.rpc(
table,
{
"query_embedding": query_embedding,
"match_count": top_k,
"match_threshold": threshold,
},
)
.execute()
)
return summaries.data
def error_callback(exception):
print("An exception occurred:", exception)
def process_batch(batch_ids: List[str]):
commons = common_dependencies()
supabase = commons["supabase"]
try:
if len(batch_ids) == 1:
return (
supabase.table("vectors")
.select(
"name:metadata->>file_name, size:metadata->>file_size",
count="exact",
)
.eq("id", batch_ids[0]) # Use parameter binding for single ID
.execute()
).data
else:
return (
supabase.table("vectors")
.select(
"name:metadata->>file_name, size:metadata->>file_size",
count="exact",
)
.in_("id", batch_ids) # Use parameter binding for multiple IDs
.execute()
).data
except Exception as e:
logger.error("Error retrieving batched vectors", e)
def get_unique_files_from_vector_ids(vectors_ids: List[str]):
# Move into Vectors class
"""
Retrieve unique user data vectors.
"""
# constants
BATCH_SIZE = 5
with ThreadPoolExecutor() as executor:
futures = []
for i in range(0, len(vectors_ids), BATCH_SIZE):
batch_ids = vectors_ids[i : i + BATCH_SIZE]
future = executor.submit(process_batch, batch_ids)
futures.append(future)
# Retrieve the results
vectors_responses = [future.result() for future in futures]
documents = [item for sublist in vectors_responses for item in sublist]
print("document", documents)
unique_files = [dict(t) for t in set(tuple(d.items()) for d in documents)]
return unique_files