quivr/backend/routes/chat_routes.py
Stan Girard e076bbe79f
Feat/testing backend (#446)
* feat(pytest): added

* feat(brains): added tests

* feat(actions): pytest
2023-07-02 02:19:30 +02:00

271 lines
8.4 KiB
Python

import os
import time
from http.client import HTTPException
from typing import List
from uuid import UUID
from auth.auth_bearer import AuthBearer, get_current_user
from fastapi import APIRouter, Depends, Query, Request
from fastapi.responses import StreamingResponse
from llm.brainpicking import BrainPicking
from llm.BrainPickingOpenAIFunctions.BrainPickingOpenAIFunctions import (
BrainPickingOpenAIFunctions,
)
from llm.PrivateBrainPicking import PrivateBrainPicking
from models.chat import Chat, ChatHistory
from models.chats import ChatQuestion
from models.settings import LLMSettings, common_dependencies
from models.users import User
from repository.chat.create_chat import CreateChatProperties, create_chat
from repository.chat.get_chat_by_id import get_chat_by_id
from repository.chat.get_chat_history import get_chat_history
from repository.chat.get_user_chats import get_user_chats
from repository.chat.update_chat import ChatUpdatableProperties, update_chat
from repository.chat.update_chat_history import update_chat_history
from utils.constants import (
openai_function_compatible_models,
streaming_compatible_models,
)
chat_router = APIRouter()
def get_chat_details(commons, chat_id):
response = (
commons["supabase"]
.from_("chats")
.select("*")
.filter("chat_id", "eq", chat_id)
.execute()
)
return response.data
def delete_chat_from_db(commons, chat_id):
try:
commons["supabase"].table("chat_history").delete().match(
{"chat_id": chat_id}
).execute()
except Exception as e:
print(e)
pass
try:
commons["supabase"].table("chats").delete().match(
{"chat_id": chat_id}
).execute()
except Exception as e:
print(e)
pass
def fetch_user_stats(commons, user, date):
response = (
commons["supabase"]
.from_("users")
.select("*")
.filter("email", "eq", user.email)
.filter("date", "eq", date)
.execute()
)
userItem = next(iter(response.data or []), {"requests_count": 0})
return userItem
def check_user_limit(
user: User,
):
if user.user_openai_api_key is None:
date = time.strftime("%Y%m%d")
max_requests_number = os.getenv("MAX_REQUESTS_NUMBER", 1000)
user.increment_user_request_count(date)
if user.requests_count >= max_requests_number:
raise HTTPException(
status_code=429,
detail="You have reached the maximum number of requests for today.",
)
else:
pass
# get all chats
@chat_router.get("/chat", dependencies=[Depends(AuthBearer())], tags=["Chat"])
async def get_chats(current_user: User = Depends(get_current_user)):
"""
Retrieve all chats for the current user.
- `current_user`: The current authenticated user.
- Returns a list of all chats for the user.
This endpoint retrieves all the chats associated with the current authenticated user. It returns a list of chat objects
containing the chat ID and chat name for each chat.
"""
chats = get_user_chats(current_user.id)
return {"chats": chats}
# delete one chat
@chat_router.delete(
"/chat/{chat_id}", dependencies=[Depends(AuthBearer())], tags=["Chat"]
)
async def delete_chat(chat_id: UUID):
"""
Delete a specific chat by chat ID.
"""
commons = common_dependencies()
delete_chat_from_db(commons, chat_id)
return {"message": f"{chat_id} has been deleted."}
# update existing chat metadata
@chat_router.put(
"/chat/{chat_id}/metadata", dependencies=[Depends(AuthBearer())], tags=["Chat"]
)
async def update_chat_metadata_handler(
chat_data: ChatUpdatableProperties,
chat_id: UUID,
current_user: User = Depends(get_current_user),
) -> Chat:
"""
Update chat attributes
"""
chat = get_chat_by_id(chat_id)
if current_user.id != chat.user_id:
raise HTTPException(
status_code=403, detail="You should be the owner of the chat to update it."
)
return update_chat(chat_id=chat_id, chat_data=chat_data)
# create new chat
@chat_router.post("/chat", dependencies=[Depends(AuthBearer())], tags=["Chat"])
async def create_chat_handler(
chat_data: CreateChatProperties,
current_user: User = Depends(get_current_user),
):
"""
Create a new chat with initial chat messages.
"""
return create_chat(user_id=current_user.id, chat_data=chat_data)
# add new question to chat
@chat_router.post(
"/chat/{chat_id}/question", dependencies=[Depends(AuthBearer())], tags=["Chat"]
)
async def create_question_handler(
request: Request,
chat_question: ChatQuestion,
chat_id: UUID,
brain_id: UUID = Query(..., description="The ID of the brain"),
current_user: User = Depends(get_current_user),
) -> ChatHistory:
current_user.user_openai_api_key = request.headers.get("Openai-Api-Key")
print("current_user", current_user)
try:
check_user_limit(current_user)
llm_settings = LLMSettings()
if llm_settings.private:
gpt_answer_generator = PrivateBrainPicking(
model=chat_question.model,
chat_id=str(chat_id),
temperature=chat_question.temperature,
max_tokens=chat_question.max_tokens,
brain_id=brain_id,
user_openai_api_key=current_user.user_openai_api_key,
)
answer = gpt_answer_generator.generate_answer(chat_question.question)
elif chat_question.model in openai_function_compatible_models:
# TODO: RBAC with current_user
gpt_answer_generator = BrainPickingOpenAIFunctions(
model=chat_question.model,
chat_id=str(chat_id),
temperature=chat_question.temperature,
max_tokens=chat_question.max_tokens,
# TODO: use user_id in vectors table instead of email
brain_id=brain_id,
user_openai_api_key=current_user.user_openai_api_key,
)
answer = gpt_answer_generator.generate_answer(chat_question.question)
else:
brainPicking = BrainPicking(
chat_id=str(chat_id),
model=chat_question.model,
max_tokens=chat_question.max_tokens,
temperature=chat_question.temperature,
brain_id=brain_id,
user_openai_api_key=current_user.user_openai_api_key,
)
answer = brainPicking.generate_answer(chat_question.question)
chat_answer = update_chat_history(
chat_id=chat_id,
user_message=chat_question.question,
assistant=answer,
)
return chat_answer
except HTTPException as e:
raise e
# stream new question response from chat
@chat_router.post(
"/chat/{chat_id}/question/stream",
dependencies=[Depends(AuthBearer())],
tags=["Chat"],
)
async def create_stream_question_handler(
request: Request,
chat_question: ChatQuestion,
chat_id: UUID,
brain_id: UUID = Query(..., description="The ID of the brain"),
current_user: User = Depends(get_current_user),
) -> StreamingResponse:
if (
os.getenv("PRIVATE") == "True"
or chat_question.model not in streaming_compatible_models
):
# forward the request to the none streaming endpoint create_question_handler function
return await create_question_handler(
request, chat_question, chat_id, current_user
)
try:
user_openai_api_key = request.headers.get("Openai-Api-Key")
check_user_limit(current_user)
brain = BrainPicking(
chat_id=str(chat_id),
model=chat_question.model,
max_tokens=chat_question.max_tokens,
temperature=chat_question.temperature,
brain_id=brain_id,
user_openai_api_key=user_openai_api_key,
streaming=True,
)
return StreamingResponse(
brain.generate_stream(chat_question.question),
media_type="text/event-stream",
)
except HTTPException as e:
raise e
# get chat history
@chat_router.get(
"/chat/{chat_id}/history", dependencies=[Depends(AuthBearer())], tags=["Chat"]
)
async def get_chat_history_handler(
chat_id: UUID,
) -> List[ChatHistory]:
# TODO: RBAC with current_user
return get_chat_history(chat_id)