mirror of
https://github.com/StanGirard/quivr.git
synced 2024-12-14 21:21:56 +03:00
ec29f30f32
* fix: edge cases on migration scripts * chore: remove unused deps. * refactor: user_routes * refactor: chat_routes * refactor: upload_routes * refactor: explore_routes * refactor: crawl_routes * chore(refactor): get current user * refactor: more dead dependencies * bug: wrap email in credentials dict. --------- Co-authored-by: Stan Girard <girard.stanislas@gmail.com>
55 lines
2.7 KiB
Python
55 lines
2.7 KiB
Python
import os
|
|
import shutil
|
|
from tempfile import SpooledTemporaryFile
|
|
|
|
from auth.auth_bearer import JWTBearer, get_current_user
|
|
from crawl.crawler import CrawlWebsite
|
|
from fastapi import APIRouter, Depends, Request, UploadFile
|
|
from models.users import User
|
|
from parsers.github import process_github
|
|
from utils.file import convert_bytes
|
|
from utils.processors import filter_file
|
|
from utils.vectors import CommonsDep
|
|
|
|
crawl_router = APIRouter()
|
|
|
|
def get_unique_user_data(commons, user):
|
|
user_vectors_response = commons['supabase'].table("vectors").select(
|
|
"name:metadata->>file_name, size:metadata->>file_size", count="exact") \
|
|
.filter("user_id", "eq", user.email)\
|
|
.execute()
|
|
documents = user_vectors_response.data # Access the data from the response
|
|
# Convert each dictionary to a tuple of items, then to a set to remove duplicates, and then back to a dictionary
|
|
user_unique_vectors = [dict(t) for t in set(tuple(d.items()) for d in documents)]
|
|
return user_unique_vectors
|
|
|
|
@crawl_router.post("/crawl/", dependencies=[Depends(JWTBearer())])
|
|
async def crawl_endpoint(request: Request,commons: CommonsDep, crawl_website: CrawlWebsite, enable_summarization: bool = False, current_user: User = Depends(get_current_user)):
|
|
max_brain_size = os.getenv("MAX_BRAIN_SIZE")
|
|
if request.headers.get('Openai-Api-Key'):
|
|
max_brain_size = os.getenv("MAX_BRAIN_SIZE_WITH_KEY",209715200)
|
|
|
|
user_unique_vectors = get_unique_user_data(commons, current_user)
|
|
|
|
current_brain_size = sum(float(doc['size']) for doc in user_unique_vectors)
|
|
|
|
file_size = 1000000
|
|
remaining_free_space = float(max_brain_size) - (current_brain_size)
|
|
|
|
if remaining_free_space - file_size < 0:
|
|
message = {"message": f"❌ User's brain will exceed maximum capacity with this upload. Maximum file allowed is : {convert_bytes(remaining_free_space)}", "type": "error"}
|
|
else:
|
|
if not crawl_website.checkGithub():
|
|
file_path, file_name = crawl_website.process()
|
|
# Create a SpooledTemporaryFile from the file_path
|
|
spooled_file = SpooledTemporaryFile()
|
|
with open(file_path, 'rb') as f:
|
|
shutil.copyfileobj(f, spooled_file)
|
|
|
|
# Pass the SpooledTemporaryFile to UploadFile
|
|
file = UploadFile(file=spooled_file, filename=file_name)
|
|
message = await filter_file(file, enable_summarization, commons['supabase'], user=current_user, openai_api_key=request.headers.get('Openai-Api-Key', None))
|
|
return message
|
|
else:
|
|
message = await process_github(crawl_website.url, "false", user=current_user, supabase=commons['supabase'], user_openai_api_key=request.headers.get('Openai-Api-Key', None))
|