quivr/backend/parsers/audio.py
Stan Girard f952d7a269
New Webapp migration (#56)
* feat(v2): loaders added

* feature: Add scroll animations

* feature: upload ui

* feature: upload multiple files

* fix: Same file name and size remove

* feat(crawler): added

* feat(parsers): v2 added more

* feat(v2): audio now working

* feat(v2): all loaders

* feat(v2): explorer

* chore: add links

* feat(api): added status in return message

* refactor(website): remove old code

* feat(upload): return type for messages

* feature: redirect to upload if ENV=local

* fix(chat): fixed some issues

* feature: respect response type

* loading state

* feature: Loading stat

* feat(v2): added explore and chat pages

* feature: modal settings

* style: Chat UI

* feature: scroll to bottom when chatting

* feature: smooth scroll in chat

* feature(anim): Slide chat in

* feature: markdown chat

* feat(explorer): list

* feat(doc): added document item

* feat(explore): added modal

* Add clarification on Project API keys and web interface for migration scripts to Readme (#58)

* fix(demo): changed link

* add support to uploading zip file (#62)

* Catch UnicodeEncodeError exception (#64)

* feature: fixed chatbar

* fix(loaders): missing argument

* fix: layout

* fix: One whole chatbox

* fix: Scroll into view

* fix(build): vercel issues

* chore(streamlit): moved to own file

* refactor(api): moved to backend folder

* feat(docker): added docker compose

* Fix a bug where langchain memories were not being cleaned (#71)

* Update README.md (#70)

* chore(streamlit): moved to own file

* refactor(api): moved to backend folder

* docs(readme): updated for new version

* docs(readme): added old readme

* docs(readme): update copy dot env file

* docs(readme): cleanup

---------

Co-authored-by: iMADi-ARCH <nandanaditya985@gmail.com>
Co-authored-by: Matt LeBel <github@lebel.io>
Co-authored-by: Evan Carlson <45178375+EvanCarlson@users.noreply.github.com>
Co-authored-by: Mustafa Hasan Khan <65130881+mustafahasankhan@users.noreply.github.com>
Co-authored-by: zhulixi <48713110+zlxxlz1026@users.noreply.github.com>
Co-authored-by: Stanisław Tuszyński <stanislaw@tuszynski.me>
2023-05-21 01:20:55 +02:00

77 lines
2.9 KiB
Python

import os
from tempfile import NamedTemporaryFile
import tempfile
from io import BytesIO
import time
import openai
from langchain.document_loaders import TextLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from utils import compute_sha1_from_content
from langchain.schema import Document
from fastapi import UploadFile
# # Create a function to transcribe audio using Whisper
# def _transcribe_audio(api_key, audio_file, stats_db):
# openai.api_key = api_key
# transcript = ""
# with BytesIO(audio_file.read()) as audio_bytes:
# # Get the extension of the uploaded file
# file_extension = os.path.splitext(audio_file.name)[-1]
# # Create a temporary file with the uploaded audio data and the correct extension
# with tempfile.NamedTemporaryFile(delete=True, suffix=file_extension) as temp_audio_file:
# temp_audio_file.write(audio_bytes.read())
# temp_audio_file.seek(0) # Move the file pointer to the beginning of the file
# transcript = openai.Audio.translate("whisper-1", temp_audio_file)
# return transcript
async def process_audio(vector_store, upload_file: UploadFile, stats_db):
file_sha = ""
dateshort = time.strftime("%Y%m%d-%H%M%S")
file_meta_name = f"audiotranscript_{dateshort}.txt"
### uploaded file to file object
openai_api_key = os.environ.get("OPENAI_API_KEY")
# Here, we're writing the uploaded file to a temporary file, so we can use it with your existing code.
with tempfile.NamedTemporaryFile(delete=False, suffix=upload_file.filename) as tmp_file:
await upload_file.seek(0)
content = await upload_file.read()
tmp_file.write(content)
tmp_file.flush()
tmp_file.close()
with open(tmp_file.name, "rb") as audio_file:
transcript = openai.Audio.transcribe("whisper-1", audio_file)
file_sha = compute_sha1_from_content(transcript.text.encode("utf-8"))
file_size = len(transcript.text.encode("utf-8"))
print(file_size)
## Load chunk size and overlap from sidebar
chunk_size = 500
chunk_overlap = 0
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
print(transcript)
print("#########")
texts = text_splitter.split_text(transcript)
docs_with_metadata = [Document(page_content=text, metadata={"file_sha1": file_sha,"file_size": file_size, "file_name": file_meta_name, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "date": dateshort}) for text in texts]
# if st.secrets.self_hosted == "false":
# add_usage(stats_db, "embedding", "audio", metadata={"file_name": file_meta_name,"file_type": ".txt", "chunk_size": chunk_size, "chunk_overlap": chunk_overlap})
vector_store.add_documents(docs_with_metadata)
return vector_store