quivr/scripts/tables.sql
Stanislav "Stan" Bogdanov d2fcb737b7
FIX tables.sql - missing ; breaks SQL queries. (#1348)
# Description

A missing ; in the CREATE query for onboarding tables breaks the script
execution on Supabase.

## Checklist before requesting a review

Please delete options that are not relevant.

- [x ] My code follows the style guidelines of this project
- [ x] I have performed a self-review of my code
- [ x] Any dependent changes have been merged

## Screenshots (if appropriate):
2023-10-06 20:32:49 +02:00

289 lines
7.6 KiB
PL/PgSQL

-- Create users table
CREATE TABLE IF NOT EXISTS user_daily_usage(
user_id UUID REFERENCES auth.users (id),
email TEXT,
date TEXT,
daily_requests_count INT,
PRIMARY KEY (user_id, date)
);
-- Create chats table
CREATE TABLE IF NOT EXISTS chats(
chat_id UUID DEFAULT uuid_generate_v4() PRIMARY KEY,
user_id UUID REFERENCES auth.users (id),
creation_time TIMESTAMP DEFAULT current_timestamp,
history JSONB,
chat_name TEXT
);
-- Create vector extension
CREATE EXTENSION IF NOT EXISTS vector;
-- Create vectors table
CREATE TABLE IF NOT EXISTS vectors (
id UUID DEFAULT uuid_generate_v4() PRIMARY KEY,
content TEXT,
file_sha1 TEXT,
metadata JSONB,
embedding VECTOR(1536)
);
-- Create function to match vectors
CREATE OR REPLACE FUNCTION match_vectors(query_embedding VECTOR(1536), match_count INT, p_brain_id UUID)
RETURNS TABLE(
id UUID,
brain_id UUID,
content TEXT,
metadata JSONB,
embedding VECTOR(1536),
similarity FLOAT
) LANGUAGE plpgsql AS $$
#variable_conflict use_column
BEGIN
RETURN QUERY
SELECT
vectors.id,
brains_vectors.brain_id,
vectors.content,
vectors.metadata,
vectors.embedding,
1 - (vectors.embedding <=> query_embedding) AS similarity
FROM
vectors
INNER JOIN
brains_vectors ON vectors.id = brains_vectors.vector_id
WHERE brains_vectors.brain_id = p_brain_id
ORDER BY
vectors.embedding <=> query_embedding
LIMIT match_count;
END;
$$;
-- Create stats table
CREATE TABLE IF NOT EXISTS stats (
time TIMESTAMP,
chat BOOLEAN,
embedding BOOLEAN,
details TEXT,
metadata JSONB,
id INTEGER PRIMARY KEY GENERATED ALWAYS AS IDENTITY
);
-- Create summaries table
CREATE TABLE IF NOT EXISTS summaries (
id BIGSERIAL PRIMARY KEY,
document_id UUID REFERENCES vectors(id),
content TEXT,
metadata JSONB,
embedding VECTOR(1536)
);
-- Create function to match summaries
CREATE OR REPLACE FUNCTION match_summaries(query_embedding VECTOR(1536), match_count INT, match_threshold FLOAT)
RETURNS TABLE(
id BIGINT,
document_id UUID,
content TEXT,
metadata JSONB,
embedding VECTOR(1536),
similarity FLOAT
) LANGUAGE plpgsql AS $$
#variable_conflict use_column
BEGIN
RETURN QUERY
SELECT
id,
document_id,
content,
metadata,
embedding,
1 - (summaries.embedding <=> query_embedding) AS similarity
FROM
summaries
WHERE 1 - (summaries.embedding <=> query_embedding) > match_threshold
ORDER BY
summaries.embedding <=> query_embedding
LIMIT match_count;
END;
$$;
-- Create api_keys table
CREATE TABLE IF NOT EXISTS api_keys(
key_id UUID DEFAULT gen_random_uuid() PRIMARY KEY,
user_id UUID REFERENCES auth.users (id),
api_key TEXT UNIQUE,
creation_time TIMESTAMP DEFAULT current_timestamp,
deleted_time TIMESTAMP,
is_active BOOLEAN DEFAULT true
);
--- Create prompts table
CREATE TABLE IF NOT EXISTS prompts (
id UUID DEFAULT uuid_generate_v4() PRIMARY KEY,
title VARCHAR(255),
content TEXT,
status VARCHAR(255) DEFAULT 'private'
);
--- Create brains table
CREATE TABLE IF NOT EXISTS brains (
brain_id UUID DEFAULT gen_random_uuid() PRIMARY KEY,
name TEXT NOT NULL,
status TEXT,
description TEXT,
model TEXT,
max_tokens INT,
temperature FLOAT,
openai_api_key TEXT,
prompt_id UUID REFERENCES prompts(id),
last_update TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
-- Create chat_history table
CREATE TABLE IF NOT EXISTS chat_history (
message_id UUID DEFAULT uuid_generate_v4(),
chat_id UUID REFERENCES chats(chat_id),
user_message TEXT,
assistant TEXT,
message_time TIMESTAMP DEFAULT current_timestamp,
PRIMARY KEY (chat_id, message_id),
prompt_id UUID REFERENCES prompts(id),
brain_id UUID REFERENCES brains(brain_id)
);
-- Create notification table
CREATE TABLE IF NOT EXISTS notifications (
id UUID DEFAULT gen_random_uuid() PRIMARY KEY,
datetime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
chat_id UUID REFERENCES chats(chat_id),
message TEXT,
action VARCHAR(255) NOT NULL,
status VARCHAR(255) NOT NULL
);
-- Create brains X users table
CREATE TABLE IF NOT EXISTS brains_users (
brain_id UUID,
user_id UUID,
rights VARCHAR(255),
default_brain BOOLEAN DEFAULT false,
PRIMARY KEY (brain_id, user_id),
FOREIGN KEY (user_id) REFERENCES auth.users (id),
FOREIGN KEY (brain_id) REFERENCES brains (brain_id)
);
-- Create brains X vectors table
CREATE TABLE IF NOT EXISTS brains_vectors (
brain_id UUID,
vector_id UUID,
file_sha1 TEXT,
PRIMARY KEY (brain_id, vector_id),
FOREIGN KEY (vector_id) REFERENCES vectors (id),
FOREIGN KEY (brain_id) REFERENCES brains (brain_id)
);
-- Create brains X vectors table
CREATE TABLE IF NOT EXISTS brain_subscription_invitations (
brain_id UUID,
email VARCHAR(255),
rights VARCHAR(255),
PRIMARY KEY (brain_id, email),
FOREIGN KEY (brain_id) REFERENCES brains (brain_id)
);
--- Create user_identity table
CREATE TABLE IF NOT EXISTS user_identity (
user_id UUID PRIMARY KEY,
openai_api_key VARCHAR(255)
);
CREATE OR REPLACE FUNCTION public.get_user_email_by_user_id(user_id uuid)
RETURNS TABLE (email text)
SECURITY definer
AS $$
BEGIN
RETURN QUERY SELECT au.email::text FROM auth.users au WHERE au.id = user_id;
END;
$$ LANGUAGE plpgsql;
CREATE OR REPLACE FUNCTION public.get_user_id_by_user_email(user_email text)
RETURNS TABLE (user_id uuid)
SECURITY DEFINER
AS $$
BEGIN
RETURN QUERY SELECT au.id::uuid FROM auth.users au WHERE au.email = user_email;
END;
$$ LANGUAGE plpgsql;
CREATE TABLE IF NOT EXISTS migrations (
name VARCHAR(255) PRIMARY KEY,
executed_at TIMESTAMPTZ DEFAULT current_timestamp
);
CREATE TABLE IF NOT EXISTS user_settings (
user_id UUID PRIMARY KEY,
models JSONB DEFAULT '["gpt-3.5-turbo","huggingface/mistralai/Mistral-7B-Instruct-v0.1"]'::jsonb,
daily_chat_credit INT DEFAULT 20,
max_brains INT DEFAULT 3,
max_brain_size INT DEFAULT 10000000
);
-- knowledge table
CREATE TABLE IF NOT EXISTS knowledge (
id UUID DEFAULT gen_random_uuid() PRIMARY KEY,
file_name TEXT,
url TEXT,
brain_id UUID NOT NULL REFERENCES brains(brain_id),
extension TEXT NOT NULL,
CHECK ((file_name IS NOT NULL AND url IS NULL) OR (file_name IS NULL AND url IS NOT NULL))
);
-- knowledge_vectors table
CREATE TABLE IF NOT EXISTS knowledge_vectors (
knowledge_id UUID NOT NULL REFERENCES knowledge(id),
vector_id UUID NOT NULL REFERENCES vectors(id),
embedding_model TEXT NOT NULL,
PRIMARY KEY (knowledge_id, vector_id, embedding_model)
);
-- Create the onboarding table
CREATE TABLE IF NOT EXISTS onboardings (
user_id UUID NOT NULL REFERENCES auth.users (id),
onboarding_a BOOLEAN NOT NULL DEFAULT true,
onboarding_b1 BOOLEAN NOT NULL DEFAULT true,
onboarding_b2 BOOLEAN NOT NULL DEFAULT true,
onboarding_b3 BOOLEAN NOT NULL DEFAULT true,
PRIMARY KEY (user_id)
);
insert into
storage.buckets (id, name)
values
('quivr', 'quivr');
CREATE POLICY "Access Quivr Storage 1jccrwz_0" ON storage.objects FOR INSERT TO anon WITH CHECK (bucket_id = 'quivr');
CREATE POLICY "Access Quivr Storage 1jccrwz_1" ON storage.objects FOR SELECT TO anon USING (bucket_id = 'quivr');
CREATE POLICY "Access Quivr Storage 1jccrwz_2" ON storage.objects FOR UPDATE TO anon USING (bucket_id = 'quivr');
CREATE POLICY "Access Quivr Storage 1jccrwz_3" ON storage.objects FOR DELETE TO anon USING (bucket_id = 'quivr');
INSERT INTO migrations (name)
SELECT '20231005170000_add_onboarding_a_to_onboarding_table'
WHERE NOT EXISTS (
SELECT 1 FROM migrations WHERE name = '20231005170000_add_onboarding_a_to_onboarding_table'
);