sygil-webui/README.md

96 lines
4.4 KiB
Markdown
Raw Normal View History

2022-09-21 01:15:15 +03:00
# Web based UI for Stable Diffusion by [sd-webui](https://github.com/sd-webui)
2022-08-27 20:28:24 +03:00
2022-09-18 21:25:23 +03:00
## [Visit sd-webui's Discord Server](https://discord.gg/gyXNe4NySY) [![Discord Server](https://user-images.githubusercontent.com/5977640/190528254-9b5b4423-47ee-4f24-b4f9-fd13fba37518.png)](https://discord.gg/gyXNe4NySY)
2022-09-22 12:39:06 +03:00
## Installation instructions for [Windows](https://sd-webui.github.io/stable-diffusion-webui/docs/1.installation.html), [Linux](https://sd-webui.github.io/stable-diffusion-webui/docs/1.linux-installation.html)
2022-08-27 20:28:24 +03:00
2022-09-19 00:39:05 +03:00
### Want to ask a question or request a feature?
2022-09-19 00:39:05 +03:00
Come to our [Discord Server](https://discord.gg/gyXNe4NySY) or use [Discussions](https://github.com/sd-webui/stable-diffusion-webui/discussions).
2022-09-09 15:51:51 +03:00
2022-09-19 00:39:05 +03:00
## Documentation
2022-09-09 15:51:51 +03:00
2022-09-19 00:39:05 +03:00
[Documentaion is located here](https://sd-webui.github.io/stable-diffusion-webui/)
2022-09-09 15:51:51 +03:00
2022-09-19 00:39:05 +03:00
## Want to contribute?
2022-09-09 15:51:51 +03:00
2022-09-19 00:39:05 +03:00
Check the [Contribution Guide](CONTRIBUTING.md)
2022-08-28 19:05:34 +03:00
2022-09-21 01:15:15 +03:00
[sd-webui](https://github.com/sd-webui) is
* ![hlky's avatar](https://avatars.githubusercontent.com/u/106811348?s=40&v=4) [hlky](https://github.com/hlky)
* ![ZeroCool940711's avatar](https://avatars.githubusercontent.com/u/5977640?s=40&v=4)[ZeroCool940711](https://github.com/ZeroCool940711)
* ![codedealer's avatar](https://avatars.githubusercontent.com/u/4258136?s=40&v=4)[codedealer](https://github.com/codedealer)
2022-08-28 08:00:14 +03:00
2022-08-25 21:59:49 +03:00
2022-08-22 17:15:46 +03:00
2022-09-21 01:15:15 +03:00
## Gradio
2022-09-21 01:15:15 +03:00
### Features
2022-09-21 01:15:15 +03:00
### Screenshots
2022-09-21 01:15:15 +03:00
## Streamlit
2022-09-21 01:15:15 +03:00
### Features
2022-09-21 01:15:15 +03:00
### Screenshots
2022-09-21 01:15:15 +03:00
--------------
*Stable Diffusion was made possible thanks to a collaboration with [Stability AI](https://stability.ai/) and [Runway](https://runwayml.com/) and builds upon our previous work:*
[**High-Resolution Image Synthesis with Latent Diffusion Models**](https://ommer-lab.com/research/latent-diffusion-models/)<br/>
[Robin Rombach](https://github.com/rromb)\*,
[Andreas Blattmann](https://github.com/ablattmann)\*,
[Dominik Lorenz](https://github.com/qp-qp)\,
[Patrick Esser](https://github.com/pesser),
[Björn Ommer](https://hci.iwr.uni-heidelberg.de/Staff/bommer)<br/>
**CVPR '22 Oral**
which is available on [GitHub](https://github.com/CompVis/latent-diffusion). PDF at [arXiv](https://arxiv.org/abs/2112.10752). Please also visit our [Project page](https://ommer-lab.com/research/latent-diffusion-models/).
2022-09-18 21:39:06 +03:00
[Stable Diffusion](#stable-diffusion-v1) is a latent text-to-image diffusion
model.
Thanks to a generous compute donation from [Stability AI](https://stability.ai/) and support from [LAION](https://laion.ai/), we were able to train a Latent Diffusion Model on 512x512 images from a subset of the [LAION-5B](https://laion.ai/blog/laion-5b/) database.
Similar to Google's [Imagen](https://arxiv.org/abs/2205.11487),
this model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts.
With its 860M UNet and 123M text encoder, the model is relatively lightweight and runs on a GPU with at least 10GB VRAM.
See [this section](#stable-diffusion-v1) below and the [model card](https://huggingface.co/CompVis/stable-diffusion).
Stable Diffusion v1 refers to a specific configuration of the model
architecture that uses a downsampling-factor 8 autoencoder with an 860M UNet
and CLIP ViT-L/14 text encoder for the diffusion model. The model was pretrained on 256x256 images and
then finetuned on 512x512 images.
*Note: Stable Diffusion v1 is a general text-to-image diffusion model and therefore mirrors biases and (mis-)conceptions that are present
in its training data.
Details on the training procedure and data, as well as the intended use of the model can be found in the corresponding [model card](https://huggingface.co/CompVis/stable-diffusion).
- Our codebase for the diffusion models builds heavily on [OpenAI's ADM codebase](https://github.com/openai/guided-diffusion)
and [https://github.com/lucidrains/denoising-diffusion-pytorch](https://github.com/lucidrains/denoising-diffusion-pytorch).
Thanks for open-sourcing!
- The implementation of the transformer encoder is from [x-transformers](https://github.com/lucidrains/x-transformers) by [lucidrains](https://github.com/lucidrains?tab=repositories).
2022-09-21 01:15:15 +03:00
BibTeX
```
@misc{rombach2021highresolution,
title={High-Resolution Image Synthesis with Latent Diffusion Models},
author={Robin Rombach and Andreas Blattmann and Dominik Lorenz and Patrick Esser and Björn Ommer},
year={2021},
eprint={2112.10752},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```