2022-09-26 16:02:48 +03:00
# This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
# Copyright 2022 sd-webui team.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
2022-09-14 12:45:18 +03:00
# base webui import and utils.
2022-09-28 19:33:54 +03:00
#from webui_streamlit import st
2022-10-04 17:25:47 +03:00
import gfpgan
2022-09-28 19:33:54 +03:00
import hydralit as st
2022-09-14 00:08:40 +03:00
2022-09-14 12:45:18 +03:00
# streamlit imports
2022-09-27 21:36:48 +03:00
from streamlit import StopException , StreamlitAPIException
2022-09-25 10:03:05 +03:00
#streamlit components section
from streamlit_server_state import server_state , server_state_lock
2022-09-28 19:33:54 +03:00
import hydralit_components as hc
2022-09-25 10:03:05 +03:00
2022-09-14 12:45:18 +03:00
#other imports
import warnings
import json
import base64
2022-09-26 11:12:06 +03:00
import os , sys , re , random , datetime , time , math , glob , toml
2022-10-02 06:18:09 +03:00
import gc
2022-09-14 12:45:18 +03:00
from PIL import Image , ImageFont , ImageDraw , ImageFilter
2022-09-14 00:08:40 +03:00
from PIL . PngImagePlugin import PngInfo
from scipy import integrate
import torch
from torchdiffeq import odeint
import k_diffusion as K
2022-10-02 01:40:50 +03:00
import math , requests
2022-09-14 00:08:40 +03:00
import mimetypes
import numpy as np
2022-10-02 06:18:09 +03:00
from numpy import asarray
2022-09-14 00:08:40 +03:00
import pynvml
import threading
2022-10-02 06:18:09 +03:00
import torch , torchvision
2022-09-14 00:08:40 +03:00
from torch import autocast
from torchvision import transforms
import torch . nn as nn
2022-09-14 12:45:18 +03:00
from omegaconf import OmegaConf
2022-09-14 00:08:40 +03:00
import yaml
from pathlib import Path
from contextlib import nullcontext
2022-10-02 06:18:09 +03:00
from einops import rearrange , repeat
2022-09-14 00:08:40 +03:00
from ldm . util import instantiate_from_config
from retry import retry
2022-09-14 12:45:18 +03:00
from slugify import slugify
import skimage
import piexif
import piexif . helper
from tqdm import trange
2022-10-02 06:18:09 +03:00
from ldm . models . diffusion . ddim import DDIMSampler
from ldm . util import ismap
2022-09-14 00:08:40 +03:00
2022-09-14 12:45:18 +03:00
# Temp imports
2022-10-02 06:18:09 +03:00
#from basicsr.utils.registry import ARCH_REGISTRY
2022-09-14 00:08:40 +03:00
2022-09-14 12:45:18 +03:00
# end of imports
#---------------------------------------------------------------------------------------------------------------
2022-09-14 00:08:40 +03:00
try :
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
from transformers import logging
logging . set_verbosity_error ( )
except :
pass
# remove some annoying deprecation warnings that show every now and then.
2022-09-25 10:03:05 +03:00
warnings . filterwarnings ( " ignore " , category = DeprecationWarning )
warnings . filterwarnings ( " ignore " , category = UserWarning )
2022-09-14 00:08:40 +03:00
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI
mimetypes . init ( )
mimetypes . add_type ( ' application/javascript ' , ' .js ' )
# some of those options should not be changed at all because they would break the model, so I removed them from options.
opt_C = 4
opt_f = 8
2022-09-18 01:25:55 +03:00
if not " defaults " in st . session_state :
st . session_state [ " defaults " ] = { }
st . session_state [ " defaults " ] = OmegaConf . load ( " configs/webui/webui_streamlit.yaml " )
if ( os . path . exists ( " configs/webui/userconfig_streamlit.yaml " ) ) :
user_defaults = OmegaConf . load ( " configs/webui/userconfig_streamlit.yaml " )
2022-10-03 07:50:24 +03:00
try :
st . session_state [ " defaults " ] = OmegaConf . merge ( st . session_state [ " defaults " ] , user_defaults )
except KeyError :
st . experimental_rerun ( )
2022-09-26 11:12:06 +03:00
else :
OmegaConf . save ( config = st . session_state . defaults , f = " configs/webui/userconfig_streamlit.yaml " )
loaded = OmegaConf . load ( " configs/webui/userconfig_streamlit.yaml " )
assert st . session_state . defaults == loaded
if ( os . path . exists ( " .streamlit/config.toml " ) ) :
st . session_state [ " streamlit_config " ] = toml . load ( " .streamlit/config.toml " )
2022-09-18 01:25:55 +03:00
2022-09-26 12:36:10 +03:00
if st . session_state [ " defaults " ] . daisi_app . running_on_daisi_io :
if os . path . exists ( " scripts/modeldownload.py " ) :
import modeldownload
modeldownload . updateModels ( )
2022-09-30 12:04:52 +03:00
#
#app = st.HydraApp(title='Stable Diffusion WebUI', favicon="", sidebar_state="expanded",
#hide_streamlit_markers=False, allow_url_nav=True , clear_cross_app_sessions=False)
2022-09-18 01:25:55 +03:00
2022-09-14 00:08:40 +03:00
# should and will be moved to a settings menu in the UI at some point
2022-09-14 16:40:56 +03:00
grid_format = [ s . lower ( ) for s in st . session_state [ " defaults " ] . general . grid_format . split ( ' : ' ) ]
2022-09-14 00:08:40 +03:00
grid_lossless = False
grid_quality = 100
if grid_format [ 0 ] == ' png ' :
grid_ext = ' png '
grid_format = ' png '
elif grid_format [ 0 ] in [ ' jpg ' , ' jpeg ' ] :
grid_quality = int ( grid_format [ 1 ] ) if len ( grid_format ) > 1 else 100
grid_ext = ' jpg '
grid_format = ' jpeg '
elif grid_format [ 0 ] == ' webp ' :
grid_quality = int ( grid_format [ 1 ] ) if len ( grid_format ) > 1 else 100
grid_ext = ' webp '
grid_format = ' webp '
if grid_quality < 0 : # e.g. webp:-100 for lossless mode
grid_lossless = True
grid_quality = abs ( grid_quality )
# should and will be moved to a settings menu in the UI at some point
2022-09-14 16:40:56 +03:00
save_format = [ s . lower ( ) for s in st . session_state [ " defaults " ] . general . save_format . split ( ' : ' ) ]
2022-09-14 00:08:40 +03:00
save_lossless = False
save_quality = 100
if save_format [ 0 ] == ' png ' :
save_ext = ' png '
save_format = ' png '
elif save_format [ 0 ] in [ ' jpg ' , ' jpeg ' ] :
save_quality = int ( save_format [ 1 ] ) if len ( save_format ) > 1 else 100
save_ext = ' jpg '
save_format = ' jpeg '
elif save_format [ 0 ] == ' webp ' :
save_quality = int ( save_format [ 1 ] ) if len ( save_format ) > 1 else 100
save_ext = ' webp '
save_format = ' webp '
if save_quality < 0 : # e.g. webp:-100 for lossless mode
save_lossless = True
save_quality = abs ( save_quality )
2022-09-18 01:25:55 +03:00
2022-09-14 00:08:40 +03:00
# this should force GFPGAN and RealESRGAN onto the selected gpu as well
os . environ [ " CUDA_DEVICE_ORDER " ] = " PCI_BUS_ID " # see issue #152
2022-09-14 16:40:56 +03:00
os . environ [ " CUDA_VISIBLE_DEVICES " ] = str ( st . session_state [ " defaults " ] . general . gpu )
2022-09-14 00:08:40 +03:00
2022-09-30 12:04:52 +03:00
#
# functions to load css locally OR remotely starts here. Options exist for future flexibility. Called as st.markdown with unsafe_allow_html as css injection
# TODO, maybe look into async loading the file especially for remote fetching
def local_css ( file_name ) :
with open ( file_name ) as f :
st . markdown ( f ' <style> { f . read ( ) } </style> ' , unsafe_allow_html = True )
def remote_css ( url ) :
st . markdown ( f ' <link href= " { url } " rel= " stylesheet " > ' , unsafe_allow_html = True )
def load_css ( isLocal , nameOrURL ) :
if ( isLocal ) :
local_css ( nameOrURL )
else :
remote_css ( nameOrURL )
2022-09-24 07:19:50 +03:00
def set_page_title ( title ) :
"""
Simple function to allows us to change the title dynamically .
Normally you can use ` st . set_page_config ` to change the title but it can only be used once per app .
"""
st . sidebar . markdown ( unsafe_allow_html = True , body = f """
< iframe height = 0 srcdoc = " <script>
const title = window . parent . document . querySelector ( ' title ' ) \
const oldObserver = window . parent . titleObserver
if ( oldObserver ) { {
oldObserver . disconnect ( )
} } \
const newObserver = new MutationObserver ( function ( mutations ) { {
const target = mutations [ 0 ] . target
if ( target . text != = ' {title} ' ) { {
target . text = ' {title} '
} }
} } ) \
newObserver . observe ( title , { { childList : true } } )
window . parent . titleObserver = newObserver \
title . text = ' {title} '
< / script > " />
""" )
2022-09-24 15:11:33 +03:00
def human_readable_size ( size , decimal_places = 3 ) :
""" Return a human readable size from bytes. """
for unit in [ ' B ' , ' KB ' , ' MB ' , ' GB ' , ' TB ' ] :
if size < 1024.0 :
break
size / = 1024.0
return f " { size : . { decimal_places } f } { unit } "
2022-09-24 07:19:50 +03:00
2022-09-25 10:03:05 +03:00
2022-10-04 17:25:47 +03:00
def load_models ( use_LDSR = False , LDSR_model = ' model ' , use_GFPGAN = False , GFPGAN_model = ' GFPGANv1.4 ' , use_RealESRGAN = False , RealESRGAN_model = " RealESRGAN_x4plus " ,
2022-09-14 00:08:40 +03:00
CustomModel_available = False , custom_model = " Stable Diffusion v1.4 " ) :
""" Load the different models. We also reuse the models that are already in memory to speed things up instead of loading them again. """
2022-09-28 19:33:54 +03:00
2022-09-14 00:08:40 +03:00
print ( " Loading models. " )
2022-10-02 01:40:50 +03:00
if " progress_bar_text " in st . session_state :
2022-10-02 17:54:56 +03:00
st . session_state [ " progress_bar_text " ] . text ( " " )
2022-09-25 10:03:05 +03:00
2022-09-14 00:08:40 +03:00
# Generate random run ID
# Used to link runs linked w/ continue_prev_run which is not yet implemented
# Use URL and filesystem safe version just in case.
st . session_state [ " run_id " ] = base64 . urlsafe_b64encode (
os . urandom ( 6 )
) . decode ( " ascii " )
# check what models we want to use and if the they are already loaded.
2022-10-02 06:18:09 +03:00
with server_state_lock [ " LDSR " ] :
if use_LDSR :
if " LDSR " in server_state and server_state [ " LDSR " ] . name == LDSR_model :
print ( " LDSR already loaded " )
else :
if " LDSR " in server_state :
del server_state [ " LDSR " ]
# Load GFPGAN
if os . path . exists ( st . session_state [ " defaults " ] . general . LDSR_dir ) :
try :
server_state [ " LDSR " ] = load_LDSR ( model_name = LDSR_model )
print ( f " Loaded LDSR " )
except Exception :
import traceback
print ( f " Error loading LDSR: " , file = sys . stderr )
print ( traceback . format_exc ( ) , file = sys . stderr )
else :
if " LDSR " in server_state :
del server_state [ " LDSR " ]
2022-09-25 10:03:05 +03:00
with server_state_lock [ " GFPGAN " ] :
if use_GFPGAN :
2022-10-02 01:40:50 +03:00
if " GFPGAN " in server_state and server_state [ " GFPGAN " ] . name == GFPGAN_model :
2022-09-25 10:03:05 +03:00
print ( " GFPGAN already loaded " )
else :
2022-10-02 01:40:50 +03:00
if " GFPGAN " in server_state :
del server_state [ " GFPGAN " ]
2022-09-25 10:03:05 +03:00
# Load GFPGAN
if os . path . exists ( st . session_state [ " defaults " ] . general . GFPGAN_dir ) :
try :
2022-10-02 01:40:50 +03:00
server_state [ " GFPGAN " ] = load_GFPGAN ( GFPGAN_model )
print ( f " Loaded GFPGAN: { GFPGAN_model } " )
2022-09-25 10:03:05 +03:00
except Exception :
import traceback
2022-10-02 01:40:50 +03:00
print ( f " Error loading GFPGAN: " , file = sys . stderr )
2022-09-25 10:03:05 +03:00
print ( traceback . format_exc ( ) , file = sys . stderr )
2022-09-14 00:08:40 +03:00
else :
2022-09-25 10:03:05 +03:00
if " GFPGAN " in server_state :
del server_state [ " GFPGAN " ]
2022-09-14 00:08:40 +03:00
2022-09-25 10:03:05 +03:00
with server_state_lock [ " RealESRGAN " ] :
if use_RealESRGAN :
if " RealESRGAN " in server_state and server_state [ " RealESRGAN " ] . model . name == RealESRGAN_model :
print ( " RealESRGAN already loaded " )
else :
#Load RealESRGAN
try :
# We first remove the variable in case it has something there,
# some errors can load the model incorrectly and leave things in memory.
del server_state [ " RealESRGAN " ]
except KeyError :
pass
if os . path . exists ( st . session_state [ " defaults " ] . general . RealESRGAN_dir ) :
# st.session_state is used for keeping the models in memory across multiple pages or runs.
server_state [ " RealESRGAN " ] = load_RealESRGAN ( RealESRGAN_model )
print ( " Loaded RealESRGAN with model " + server_state [ " RealESRGAN " ] . model . name )
2022-09-14 00:08:40 +03:00
else :
2022-09-25 10:03:05 +03:00
if " RealESRGAN " in server_state :
del server_state [ " RealESRGAN " ]
2022-09-14 00:08:40 +03:00
2022-09-25 10:03:05 +03:00
with server_state_lock [ " model " ] , server_state_lock [ " modelCS " ] , server_state_lock [ " modelFS " ] , server_state_lock [ " loaded_model " ] :
if " model " in server_state :
if " model " in server_state and server_state [ " loaded_model " ] == custom_model :
# TODO: check if the optimized mode was changed?
print ( " Model already loaded " )
return
else :
try :
del server_state [ " model " ]
del server_state [ " modelCS " ]
del server_state [ " modelFS " ]
del server_state [ " loaded_model " ]
except KeyError :
pass
2022-09-19 10:02:21 +03:00
2022-09-25 10:03:05 +03:00
# if the model from txt2vid is in memory we need to remove it to improve performance.
with server_state_lock [ " pipe " ] :
if " pipe " in server_state :
del server_state [ " pipe " ]
2022-09-27 21:36:48 +03:00
if " textual_inversion " in st . session_state :
del st . session_state [ ' textual_inversion ' ]
2022-09-25 10:03:05 +03:00
# At this point the model is either
2022-09-27 21:36:48 +03:00
# not loaded yet or have been evicted:
2022-09-25 10:03:05 +03:00
# load new model into memory
server_state [ " custom_model " ] = custom_model
config , device , model , modelCS , modelFS = load_sd_model ( custom_model )
2022-09-18 02:49:42 +03:00
2022-09-25 10:03:05 +03:00
server_state [ " device " ] = device
server_state [ " model " ] = model
2022-09-18 02:49:42 +03:00
2022-09-25 10:03:05 +03:00
server_state [ " modelCS " ] = modelCS
server_state [ " modelFS " ] = modelFS
server_state [ " loaded_model " ] = custom_model
#trying to disable multiprocessing as it makes it so streamlit cant stop when the
# model is loaded in memory and you need to kill the process sometimes.
2022-10-02 01:40:50 +03:00
server_state [ " model " ] . args . use_multiprocessing_for_evaluation = False
2022-09-25 10:03:05 +03:00
if st . session_state . defaults . general . enable_attention_slicing :
server_state [ " model " ] . enable_attention_slicing ( )
if st . session_state . defaults . general . enable_minimal_memory_usage :
server_state [ " model " ] . enable_minimal_memory_usage ( )
print ( " Model loaded. " )
2022-10-02 19:46:14 +03:00
return True
2022-09-14 00:08:40 +03:00
def load_model_from_config ( config , ckpt , verbose = False ) :
print ( f " Loading model from { ckpt } " )
pl_sd = torch . load ( ckpt , map_location = " cpu " )
if " global_step " in pl_sd :
print ( f " Global Step: { pl_sd [ ' global_step ' ] } " )
sd = pl_sd [ " state_dict " ]
model = instantiate_from_config ( config . model )
m , u = model . load_state_dict ( sd , strict = False )
if len ( m ) > 0 and verbose :
print ( " missing keys: " )
print ( m )
if len ( u ) > 0 and verbose :
print ( " unexpected keys: " )
print ( u )
model . cuda ( )
model . eval ( )
return model
2022-09-14 18:22:24 +03:00
2022-09-14 00:08:40 +03:00
def load_sd_from_config ( ckpt , verbose = False ) :
print ( f " Loading model from { ckpt } " )
pl_sd = torch . load ( ckpt , map_location = " cpu " )
if " global_step " in pl_sd :
print ( f " Global Step: { pl_sd [ ' global_step ' ] } " )
sd = pl_sd [ " state_dict " ]
return sd
class MemUsageMonitor ( threading . Thread ) :
stop_flag = False
max_usage = 0
total = - 1
def __init__ ( self , name ) :
threading . Thread . __init__ ( self )
self . name = name
def run ( self ) :
try :
pynvml . nvmlInit ( )
except :
print ( f " [ { self . name } ] Unable to initialize NVIDIA management. No memory stats. \n " )
return
2022-10-05 22:23:31 +03:00
print ( f " [ { self . name } ] Recording memory usage... \n " )
2022-09-14 18:41:42 +03:00
# Missing context
#handle = pynvml.nvmlDeviceGetHandleByIndex(st.session_state['defaults'].general.gpu)
handle = pynvml . nvmlDeviceGetHandleByIndex ( 0 )
2022-09-14 00:08:40 +03:00
self . total = pynvml . nvmlDeviceGetMemoryInfo ( handle ) . total
while not self . stop_flag :
m = pynvml . nvmlDeviceGetMemoryInfo ( handle )
self . max_usage = max ( self . max_usage , m . used )
# print(self.max_usage)
time . sleep ( 0.1 )
print ( f " [ { self . name } ] Stopped recording. \n " )
pynvml . nvmlShutdown ( )
def read ( self ) :
return self . max_usage , self . total
def stop ( self ) :
self . stop_flag = True
def read_and_stop ( self ) :
self . stop_flag = True
return self . max_usage , self . total
class CFGMaskedDenoiser ( nn . Module ) :
def __init__ ( self , model ) :
super ( ) . __init__ ( )
self . inner_model = model
def forward ( self , x , sigma , uncond , cond , cond_scale , mask , x0 , xi ) :
x_in = x
x_in = torch . cat ( [ x_in ] * 2 )
sigma_in = torch . cat ( [ sigma ] * 2 )
cond_in = torch . cat ( [ uncond , cond ] )
uncond , cond = self . inner_model ( x_in , sigma_in , cond = cond_in ) . chunk ( 2 )
denoised = uncond + ( cond - uncond ) * cond_scale
if mask is not None :
assert x0 is not None
img_orig = x0
mask_inv = 1. - mask
denoised = ( img_orig * mask_inv ) + ( mask * denoised )
return denoised
class CFGDenoiser ( nn . Module ) :
def __init__ ( self , model ) :
super ( ) . __init__ ( )
self . inner_model = model
def forward ( self , x , sigma , uncond , cond , cond_scale ) :
x_in = torch . cat ( [ x ] * 2 )
sigma_in = torch . cat ( [ sigma ] * 2 )
cond_in = torch . cat ( [ uncond , cond ] )
uncond , cond = self . inner_model ( x_in , sigma_in , cond = cond_in ) . chunk ( 2 )
return uncond + ( cond - uncond ) * cond_scale
def append_zero ( x ) :
return torch . cat ( [ x , x . new_zeros ( [ 1 ] ) ] )
def append_dims ( x , target_dims ) :
""" Appends dimensions to the end of a tensor until it has target_dims dimensions. """
dims_to_append = target_dims - x . ndim
if dims_to_append < 0 :
raise ValueError ( f ' input has { x . ndim } dims but target_dims is { target_dims } , which is less ' )
return x [ ( . . . , ) + ( None , ) * dims_to_append ]
def get_sigmas_karras ( n , sigma_min , sigma_max , rho = 7. , device = ' cpu ' ) :
""" Constructs the noise schedule of Karras et al. (2022). """
ramp = torch . linspace ( 0 , 1 , n )
min_inv_rho = sigma_min * * ( 1 / rho )
max_inv_rho = sigma_max * * ( 1 / rho )
sigmas = ( max_inv_rho + ramp * ( min_inv_rho - max_inv_rho ) ) * * rho
return append_zero ( sigmas ) . to ( device )
2022-09-14 12:45:18 +03:00
#
# helper fft routines that keep ortho normalization and auto-shift before and after fft
def _fft2 ( data ) :
if data . ndim > 2 : # has channels
out_fft = np . zeros ( ( data . shape [ 0 ] , data . shape [ 1 ] , data . shape [ 2 ] ) , dtype = np . complex128 )
for c in range ( data . shape [ 2 ] ) :
c_data = data [ : , : , c ]
out_fft [ : , : , c ] = np . fft . fft2 ( np . fft . fftshift ( c_data ) , norm = " ortho " )
out_fft [ : , : , c ] = np . fft . ifftshift ( out_fft [ : , : , c ] )
else : # one channel
out_fft = np . zeros ( ( data . shape [ 0 ] , data . shape [ 1 ] ) , dtype = np . complex128 )
out_fft [ : , : ] = np . fft . fft2 ( np . fft . fftshift ( data ) , norm = " ortho " )
out_fft [ : , : ] = np . fft . ifftshift ( out_fft [ : , : ] )
return out_fft
def _ifft2 ( data ) :
if data . ndim > 2 : # has channels
out_ifft = np . zeros ( ( data . shape [ 0 ] , data . shape [ 1 ] , data . shape [ 2 ] ) , dtype = np . complex128 )
for c in range ( data . shape [ 2 ] ) :
c_data = data [ : , : , c ]
out_ifft [ : , : , c ] = np . fft . ifft2 ( np . fft . fftshift ( c_data ) , norm = " ortho " )
out_ifft [ : , : , c ] = np . fft . ifftshift ( out_ifft [ : , : , c ] )
else : # one channel
out_ifft = np . zeros ( ( data . shape [ 0 ] , data . shape [ 1 ] ) , dtype = np . complex128 )
out_ifft [ : , : ] = np . fft . ifft2 ( np . fft . fftshift ( data ) , norm = " ortho " )
out_ifft [ : , : ] = np . fft . ifftshift ( out_ifft [ : , : ] )
return out_ifft
def _get_gaussian_window ( width , height , std = 3.14 , mode = 0 ) :
window_scale_x = float ( width / min ( width , height ) )
window_scale_y = float ( height / min ( width , height ) )
window = np . zeros ( ( width , height ) )
x = ( np . arange ( width ) / width * 2. - 1. ) * window_scale_x
for y in range ( height ) :
fy = ( y / height * 2. - 1. ) * window_scale_y
if mode == 0 :
window [ : , y ] = np . exp ( - ( x * * 2 + fy * * 2 ) * std )
else :
window [ : , y ] = ( 1 / ( ( x * * 2 + 1. ) * ( fy * * 2 + 1. ) ) ) * * ( std / 3.14 ) # hey wait a minute that's not gaussian
return window
def _get_masked_window_rgb ( np_mask_grey , hardness = 1. ) :
np_mask_rgb = np . zeros ( ( np_mask_grey . shape [ 0 ] , np_mask_grey . shape [ 1 ] , 3 ) )
if hardness != 1. :
hardened = np_mask_grey [ : ] * * hardness
else :
hardened = np_mask_grey [ : ]
for c in range ( 3 ) :
np_mask_rgb [ : , : , c ] = hardened [ : ]
return np_mask_rgb
def get_matched_noise ( _np_src_image , np_mask_rgb , noise_q , color_variation ) :
"""
Explanation :
Getting good results in / out - painting with stable diffusion can be challenging .
Although there are simpler effective solutions for in - painting , out - painting can be especially challenging because there is no color data
in the masked area to help prompt the generator . Ideally , even for in - painting we ' d like work effectively without that data as well.
Provided here is my take on a potential solution to this problem .
By taking a fourier transform of the masked src img we get a function that tells us the presence and orientation of each feature scale in the unmasked src .
Shaping the init / seed noise for in / outpainting to the same distribution of feature scales , orientations , and positions increases output coherence
by helping keep features aligned . This technique is applicable to any continuous generation task such as audio or video , each of which can
be conceptualized as a series of out - painting steps where the last half of the input " frame " is erased . For multi - channel data such as color
or stereo sound the " color tone " or histogram of the seed noise can be matched to improve quality ( using scikit - image currently )
This method is quite robust and has the added benefit of being fast independently of the size of the out - painted area .
The effects of this method include things like helping the generator integrate the pre - existing view distance and camera angle .
Carefully managing color and brightness with histogram matching is also essential to achieving good coherence .
noise_q controls the exponent in the fall - off of the distribution can be any positive number , lower values means higher detail ( range > 0 , default 1. )
color_variation controls how much freedom is allowed for the colors / palette of the out - painted area ( range 0. .1 , default 0.01 )
This code is provided as is under the Unlicense ( https : / / unlicense . org / )
Although you have no obligation to do so , if you found this code helpful please find it in your heart to credit me [ parlance - zz ] .
Questions or comments can be sent to parlance @fifth - harmonic . com ( https : / / github . com / parlance - zz / )
This code is part of a new branch of a discord bot I am working on integrating with diffusers ( https : / / github . com / parlance - zz / g - diffuser - bot )
"""
global DEBUG_MODE
global TMP_ROOT_PATH
width = _np_src_image . shape [ 0 ]
height = _np_src_image . shape [ 1 ]
num_channels = _np_src_image . shape [ 2 ]
np_src_image = _np_src_image [ : ] * ( 1. - np_mask_rgb )
np_mask_grey = ( np . sum ( np_mask_rgb , axis = 2 ) / 3. )
np_src_grey = ( np . sum ( np_src_image , axis = 2 ) / 3. )
all_mask = np . ones ( ( width , height ) , dtype = bool )
img_mask = np_mask_grey > 1e-6
ref_mask = np_mask_grey < 1e-3
windowed_image = _np_src_image * ( 1. - _get_masked_window_rgb ( np_mask_grey ) )
windowed_image / = np . max ( windowed_image )
windowed_image + = np . average ( _np_src_image ) * np_mask_rgb # / (1.-np.average(np_mask_rgb)) # rather than leave the masked area black, we get better results from fft by filling the average unmasked color
#windowed_image += np.average(_np_src_image) * (np_mask_rgb * (1.- np_mask_rgb)) / (1.-np.average(np_mask_rgb)) # compensate for darkening across the mask transition area
#_save_debug_img(windowed_image, "windowed_src_img")
src_fft = _fft2 ( windowed_image ) # get feature statistics from masked src img
src_dist = np . absolute ( src_fft )
src_phase = src_fft / src_dist
#_save_debug_img(src_dist, "windowed_src_dist")
noise_window = _get_gaussian_window ( width , height , mode = 1 ) # start with simple gaussian noise
noise_rgb = np . random . random_sample ( ( width , height , num_channels ) )
noise_grey = ( np . sum ( noise_rgb , axis = 2 ) / 3. )
noise_rgb * = color_variation # the colorfulness of the starting noise is blended to greyscale with a parameter
for c in range ( num_channels ) :
noise_rgb [ : , : , c ] + = ( 1. - color_variation ) * noise_grey
noise_fft = _fft2 ( noise_rgb )
for c in range ( num_channels ) :
noise_fft [ : , : , c ] * = noise_window
noise_rgb = np . real ( _ifft2 ( noise_fft ) )
shaped_noise_fft = _fft2 ( noise_rgb )
shaped_noise_fft [ : , : , : ] = np . absolute ( shaped_noise_fft [ : , : , : ] ) * * 2 * ( src_dist * * noise_q ) * src_phase # perform the actual shaping
brightness_variation = 0. #color_variation # todo: temporarily tieing brightness variation to color variation for now
contrast_adjusted_np_src = _np_src_image [ : ] * ( brightness_variation + 1. ) - brightness_variation * 2.
# scikit-image is used for histogram matching, very convenient!
shaped_noise = np . real ( _ifft2 ( shaped_noise_fft ) )
shaped_noise - = np . min ( shaped_noise )
shaped_noise / = np . max ( shaped_noise )
shaped_noise [ img_mask , : ] = skimage . exposure . match_histograms ( shaped_noise [ img_mask , : ] * * 1. , contrast_adjusted_np_src [ ref_mask , : ] , channel_axis = 1 )
shaped_noise = _np_src_image [ : ] * ( 1. - np_mask_rgb ) + shaped_noise * np_mask_rgb
#_save_debug_img(shaped_noise, "shaped_noise")
matched_noise = np . zeros ( ( width , height , num_channels ) )
matched_noise = shaped_noise [ : ]
#matched_noise[all_mask,:] = skimage.exposure.match_histograms(shaped_noise[all_mask,:], _np_src_image[ref_mask,:], channel_axis=1)
#matched_noise = _np_src_image[:] * (1. - np_mask_rgb) + matched_noise * np_mask_rgb
#_save_debug_img(matched_noise, "matched_noise")
"""
todo :
color_variation doesnt have to be a single number , the overall color tone of the out - painted area could be param controlled
"""
return np . clip ( matched_noise , 0. , 1. )
#
def find_noise_for_image ( model , device , init_image , prompt , steps = 200 , cond_scale = 2.0 , verbose = False , normalize = False , generation_callback = None ) :
image = np . array ( init_image ) . astype ( np . float32 ) / 255.0
image = image [ None ] . transpose ( 0 , 3 , 1 , 2 )
image = torch . from_numpy ( image )
image = 2. * image - 1.
image = image . to ( device )
x = model . get_first_stage_encoding ( model . encode_first_stage ( image ) )
uncond = model . get_learned_conditioning ( [ ' ' ] )
cond = model . get_learned_conditioning ( [ prompt ] )
s_in = x . new_ones ( [ x . shape [ 0 ] ] )
dnw = K . external . CompVisDenoiser ( model )
sigmas = dnw . get_sigmas ( steps ) . flip ( 0 )
if verbose :
print ( sigmas )
for i in trange ( 1 , len ( sigmas ) ) :
x_in = torch . cat ( [ x ] * 2 )
sigma_in = torch . cat ( [ sigmas [ i - 1 ] * s_in ] * 2 )
cond_in = torch . cat ( [ uncond , cond ] )
c_out , c_in = [ K . utils . append_dims ( k , x_in . ndim ) for k in dnw . get_scalings ( sigma_in ) ]
if i == 1 :
t = dnw . sigma_to_t ( torch . cat ( [ sigmas [ i ] * s_in ] * 2 ) )
else :
t = dnw . sigma_to_t ( sigma_in )
eps = model . apply_model ( x_in * c_in , t , cond = cond_in )
denoised_uncond , denoised_cond = ( x_in + eps * c_out ) . chunk ( 2 )
denoised = denoised_uncond + ( denoised_cond - denoised_uncond ) * cond_scale
if i == 1 :
d = ( x - denoised ) / ( 2 * sigmas [ i ] )
else :
d = ( x - denoised ) / sigmas [ i - 1 ]
if generation_callback is not None :
generation_callback ( x , i )
dt = sigmas [ i ] - sigmas [ i - 1 ]
x = x + d * dt
return x / sigmas [ - 1 ]
2022-09-27 21:36:48 +03:00
#
def folder_picker ( label = " Select: " , value = " " , help = " " , folder_button_label = " Select " , folder_button_help = " " , folder_button_key = " " ) :
""" A folder picker that has a text_input field next to it and a button to select the folder.
Returns the text_input field with the folder path . """
import tkinter as tk
from tkinter import filedialog
import string
# Set up tkinter
root = tk . Tk ( )
root . withdraw ( )
# Make folder picker dialog appear on top of other windows
root . wm_attributes ( ' -topmost ' , 1 )
col1 , col2 = st . columns ( [ 2 , 1 ] , gap = " small " )
with col1 :
dirname = st . empty ( )
with col2 :
st . write ( " " )
st . write ( " " )
folder_picker = st . empty ( )
# Folder picker button
#st.title('Folder Picker')
#st.write('Please select a folder:')
# Create a label and add a random number of invisible characters
# to it so no two buttons inside a form are the same.
#folder_button_label = ''.join(random.choice(f"{folder_button_label}") for _ in range(5))
folder_button_label = f " { str ( folder_button_label ) } { ' ' * random . randint ( 1 , 500 ) } "
clicked = folder_button_key + ' ' * random . randint ( 5 , 500 )
#try:
#clicked = folder_picker.button(folder_button_label, help=folder_button_help, key=folder_button_key)
#except StreamlitAPIException:
clicked = folder_picker . form_submit_button ( folder_button_label , help = folder_button_help )
if clicked :
dirname = dirname . text_input ( label , filedialog . askdirectory ( master = root ) , help = help )
else :
dirname = dirname . text_input ( label , value , help = help )
return dirname
2022-09-14 00:08:40 +03:00
def get_sigmas_exponential ( n , sigma_min , sigma_max , device = ' cpu ' ) :
""" Constructs an exponential noise schedule. """
sigmas = torch . linspace ( math . log ( sigma_max ) , math . log ( sigma_min ) , n , device = device ) . exp ( )
return append_zero ( sigmas )
def get_sigmas_vp ( n , beta_d = 19.9 , beta_min = 0.1 , eps_s = 1e-3 , device = ' cpu ' ) :
""" Constructs a continuous VP noise schedule. """
t = torch . linspace ( 1 , eps_s , n , device = device )
sigmas = torch . sqrt ( torch . exp ( beta_d * t * * 2 / 2 + beta_min * t ) - 1 )
return append_zero ( sigmas )
def to_d ( x , sigma , denoised ) :
""" Converts a denoiser output to a Karras ODE derivative. """
return ( x - denoised ) / append_dims ( sigma , x . ndim )
2022-09-25 10:03:05 +03:00
2022-09-14 00:08:40 +03:00
def linear_multistep_coeff ( order , t , i , j ) :
if order - 1 > i :
raise ValueError ( f ' Order { order } too high for step { i } ' )
def fn ( tau ) :
prod = 1.
for k in range ( order ) :
if j == k :
continue
prod * = ( tau - t [ i - k ] ) / ( t [ i - j ] - t [ i - k ] )
return prod
return integrate . quad ( fn , t [ i ] , t [ i + 1 ] , epsrel = 1e-4 ) [ 0 ]
class KDiffusionSampler :
def __init__ ( self , m , sampler ) :
self . model = m
self . model_wrap = K . external . CompVisDenoiser ( m )
self . schedule = sampler
def get_sampler_name ( self ) :
return self . schedule
def sample ( self , S , conditioning , batch_size , shape , verbose , unconditional_guidance_scale , unconditional_conditioning , eta , x_T , img_callback = None , log_every_t = None ) :
sigmas = self . model_wrap . get_sigmas ( S )
x = x_T * sigmas [ 0 ]
model_wrap_cfg = CFGDenoiser ( self . model_wrap )
samples_ddim = None
samples_ddim = K . sampling . __dict__ [ f ' sample_ { self . schedule } ' ] ( model_wrap_cfg , x , sigmas ,
extra_args = { ' cond ' : conditioning , ' uncond ' : unconditional_conditioning ,
' cond_scale ' : unconditional_guidance_scale } , disable = False , callback = generation_callback )
#
return samples_ddim , None
2022-10-02 06:18:09 +03:00
#
#create class LDSR
class LDSR ( ) :
#init function
def __init__ ( self , modelPath , yamlPath ) :
self . modelPath = modelPath
self . yamlPath = yamlPath
#self.model = self.load_model_from_config()
#print(self.load_model_from_config(OmegaConf.load(yamlPath), modelPath))
#self.print_current_directory()
#get currennt directory
'''
def check_model_exists ( self ) :
#check if model and yaml exist
path = self . pathInput + " /models/ldm/ld_sr " . replace ( ' \\ ' , os . sep ) . replace ( ' / ' , os . sep )
model = self . modelName
yaml = self . yamlName
if os . path . exists ( path ) :
#check if yaml exists
if os . path . exists ( os . path . join ( path , yaml ) ) :
print ( ' YAML found ' )
#check if ckpt exists
if os . path . exists ( os . path . join ( path , model ) ) :
print ( ' Model found ' )
return os . path . join ( path , model ) , os . path . join ( path , yaml )
else :
return False
#return onlyfiles
'''
def load_model_from_config ( self ) :
#print(f"Loading model from {self.modelPath}")
pl_sd = torch . load ( self . modelPath , map_location = " cpu " )
global_step = pl_sd [ " global_step " ]
sd = pl_sd [ " state_dict " ]
config = OmegaConf . load ( self . yamlPath )
model = instantiate_from_config ( config . model )
m , u = model . load_state_dict ( sd , strict = False )
model . cuda ( )
model . eval ( )
return { " model " : model } #, global_step
'''
def get_model ( self ) :
check = self . check_model_exists ( )
if check != False :
path_ckpt = check [ 0 ]
path_conf = check [ 1 ]
else :
print ( ' Model not found, please run the bat file to download the model ' )
config = OmegaConf . load ( path_conf )
model , step = self . load_model_from_config ( config , path_ckpt )
return model
def get_custom_cond ( mode ) :
dest = " data/example_conditioning "
if mode == " superresolution " :
uploaded_img = files . upload ( )
filename = next ( iter ( uploaded_img ) )
name , filetype = filename . split ( " . " ) # todo assumes just one dot in name !
os . rename ( f " { filename } " , f " { dest } / { mode } /custom_ { name } . { filetype } " )
elif mode == " text_conditional " :
#w = widgets.Text(value='A cake with cream!', disabled=True)
w = ' Empty Test '
display . display ( w )
with open ( f " { dest } / { mode } /custom_ { w . value [ : 20 ] } .txt " , ' w ' ) as f :
f . write ( w . value )
elif mode == " class_conditional " :
#w = widgets.IntSlider(min=0, max=1000)
w = 1000
display . display ( w )
with open ( f " { dest } / { mode } /custom.txt " , ' w ' ) as f :
f . write ( w . value )
else :
raise NotImplementedError ( f " cond not implemented for mode { mode } " )
'''
def get_cond_options ( self , mode ) :
path = " data/example_conditioning "
path = os . path . join ( path , mode )
onlyfiles = [ f for f in sorted ( os . listdir ( path ) ) ]
return path , onlyfiles
'''
def select_cond_path ( mode ) :
path = " data/example_conditioning " # todo
path = os . path . join ( path , mode )
onlyfiles = [ f for f in sorted ( os . listdir ( path ) ) ]
selected = widgets . RadioButtons (
options = onlyfiles ,
description = ' Select conditioning: ' ,
disabled = False
)
display . display ( selected )
selected_path = os . path . join ( path , selected . value )
return selected_path
'''
'''
# Google Collab stuff
def visualize_cond_img ( path ) :
display . display ( ipyimg ( filename = path ) )
'''
def run ( self , model , selected_path , task , custom_steps , eta , resize_enabled = False , classifier_ckpt = None , global_step = None ) :
def make_convolutional_sample ( batch , model , mode = " vanilla " , custom_steps = None , eta = 1.0 , swap_mode = False , masked = False ,
invert_mask = True , quantize_x0 = False , custom_schedule = None , decode_interval = 1000 ,
resize_enabled = False , custom_shape = None , temperature = 1. , noise_dropout = 0. , corrector = None ,
corrector_kwargs = None , x_T = None , save_intermediate_vid = False , make_progrow = True , ddim_use_x0_pred = False ) :
log = dict ( )
z , c , x , xrec , xc = model . get_input ( batch , model . first_stage_key ,
return_first_stage_outputs = True ,
force_c_encode = not ( hasattr ( model , ' split_input_params ' )
and model . cond_stage_key == ' coordinates_bbox ' ) ,
return_original_cond = True )
log_every_t = 1 if save_intermediate_vid else None
if custom_shape is not None :
z = torch . randn ( custom_shape )
# print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}")
z0 = None
log [ " input " ] = x
log [ " reconstruction " ] = xrec
if ismap ( xc ) :
log [ " original_conditioning " ] = model . to_rgb ( xc )
if hasattr ( model , ' cond_stage_key ' ) :
log [ model . cond_stage_key ] = model . to_rgb ( xc )
else :
log [ " original_conditioning " ] = xc if xc is not None else torch . zeros_like ( x )
if model . cond_stage_model :
log [ model . cond_stage_key ] = xc if xc is not None else torch . zeros_like ( x )
if model . cond_stage_key == ' class_label ' :
log [ model . cond_stage_key ] = xc [ model . cond_stage_key ]
with model . ema_scope ( " Plotting " ) :
t0 = time . time ( )
img_cb = None
sample , intermediates = convsample_ddim ( model , c , steps = custom_steps , shape = z . shape ,
eta = eta ,
quantize_x0 = quantize_x0 , img_callback = img_cb , mask = None , x0 = z0 ,
temperature = temperature , noise_dropout = noise_dropout ,
score_corrector = corrector , corrector_kwargs = corrector_kwargs ,
x_T = x_T , log_every_t = log_every_t )
t1 = time . time ( )
if ddim_use_x0_pred :
sample = intermediates [ ' pred_x0 ' ] [ - 1 ]
x_sample = model . decode_first_stage ( sample )
try :
x_sample_noquant = model . decode_first_stage ( sample , force_not_quantize = True )
log [ " sample_noquant " ] = x_sample_noquant
log [ " sample_diff " ] = torch . abs ( x_sample_noquant - x_sample )
except :
pass
log [ " sample " ] = x_sample
log [ " time " ] = t1 - t0
return log
def convsample_ddim ( model , cond , steps , shape , eta = 1.0 , callback = None , normals_sequence = None ,
mask = None , x0 = None , quantize_x0 = False , img_callback = None ,
temperature = 1. , noise_dropout = 0. , score_corrector = None ,
corrector_kwargs = None , x_T = None , log_every_t = None
) :
ddim = DDIMSampler ( model )
bs = shape [ 0 ] # dont know where this comes from but wayne
shape = shape [ 1 : ] # cut batch dim
print ( f " Sampling with eta = { eta } ; steps: { steps } " )
samples , intermediates = ddim . sample ( steps , batch_size = bs , shape = shape , conditioning = cond , callback = callback ,
normals_sequence = normals_sequence , quantize_x0 = quantize_x0 , eta = eta ,
mask = mask , x0 = x0 , temperature = temperature , verbose = False ,
score_corrector = score_corrector ,
corrector_kwargs = corrector_kwargs , x_T = x_T )
return samples , intermediates
# global stride
def get_cond ( mode , selected_path ) :
example = dict ( )
if mode == " superresolution " :
up_f = 4
#visualize_cond_img(selected_path)
c = selected_path . convert ( ' RGB ' )
c = torch . unsqueeze ( torchvision . transforms . ToTensor ( ) ( c ) , 0 )
c_up = torchvision . transforms . functional . resize ( c , size = [ up_f * c . shape [ 2 ] , up_f * c . shape [ 3 ] ] , antialias = True )
c_up = rearrange ( c_up , ' 1 c h w -> 1 h w c ' )
c = rearrange ( c , ' 1 c h w -> 1 h w c ' )
c = 2. * c - 1.
c = c . to ( torch . device ( " cuda " ) )
example [ " LR_image " ] = c
example [ " image " ] = c_up
return example
example = get_cond ( task , selected_path )
save_intermediate_vid = False
n_runs = 1
masked = False
guider = None
ckwargs = None
mode = ' ddim '
ddim_use_x0_pred = False
temperature = 1.
eta = eta
make_progrow = True
custom_shape = None
height , width = example [ " image " ] . shape [ 1 : 3 ]
split_input = height > = 128 and width > = 128
if split_input :
ks = 128
stride = 64
vqf = 4 #
model . split_input_params = { " ks " : ( ks , ks ) , " stride " : ( stride , stride ) ,
" vqf " : vqf ,
" patch_distributed_vq " : True ,
" tie_braker " : False ,
" clip_max_weight " : 0.5 ,
" clip_min_weight " : 0.01 ,
" clip_max_tie_weight " : 0.5 ,
" clip_min_tie_weight " : 0.01 }
else :
if hasattr ( model , " split_input_params " ) :
delattr ( model , " split_input_params " )
invert_mask = False
x_T = None
for n in range ( n_runs ) :
if custom_shape is not None :
x_T = torch . randn ( 1 , custom_shape [ 1 ] , custom_shape [ 2 ] , custom_shape [ 3 ] ) . to ( model . device )
x_T = repeat ( x_T , ' 1 c h w -> b c h w ' , b = custom_shape [ 0 ] )
logs = make_convolutional_sample ( example , model ,
mode = mode , custom_steps = custom_steps ,
eta = eta , swap_mode = False , masked = masked ,
invert_mask = invert_mask , quantize_x0 = False ,
custom_schedule = None , decode_interval = 10 ,
resize_enabled = resize_enabled , custom_shape = custom_shape ,
temperature = temperature , noise_dropout = 0. ,
corrector = guider , corrector_kwargs = ckwargs , x_T = x_T , save_intermediate_vid = save_intermediate_vid ,
make_progrow = make_progrow , ddim_use_x0_pred = ddim_use_x0_pred
)
return logs
@torch.no_grad ( )
@torch.no_grad ( )
2022-10-03 06:26:01 +03:00
def superResolution ( self , image , ddimSteps = 100 , preDownScale = 1 , postDownScale = 1 , downsample_method = " Lanczos " ) :
"""
#Run settings
diffusion_steps = int ( ddimSteps ) #@param [25, 50, 100, 250, 500, 1000]
eta = 1.0 #@param {type: 'raw'}
stride = 0 #not working atm
# ####Scaling options:
# Downsampling to 256px first will often improve the final image and runs faster.
# You can improve sharpness without upscaling by upscaling and then downsampling to the original size (i.e. Super Resolution)
preDownScale : Values [ ' None ' , ' 2 ' , ' 4 ' ]
2022-10-02 06:18:09 +03:00
2022-10-03 06:26:01 +03:00
postDownScale : Values [ ' None ' , ' Original Size ' , ' 2 ' , ' 4 ' ]
2022-10-02 06:18:09 +03:00
2022-10-03 06:26:01 +03:00
# Nearest gives sharper results, but may look more pixellated. Lancoz is much higher quality, but result may be less crisp.
downsample_method = ' Lanczos ' #@param ['Nearest', 'Lanczos']
"""
diffMode = ' superresolution '
model = self . load_model_from_config ( )
2022-10-02 06:18:09 +03:00
#Run settings
diffusion_steps = int ( ddimSteps ) #@param [25, 50, 100, 250, 500, 1000]
eta = 1.0 #@param {type: 'raw'}
stride = 0 #not working atm
# ####Scaling options:
# Downsampling to 256px first will often improve the final image and runs faster.
# You can improve sharpness without upscaling by upscaling and then downsampling to the original size (i.e. Super Resolution)
2022-10-03 06:26:01 +03:00
pre_downsample = preDownScale #@param ['None', '2', '4']
2022-10-02 06:18:09 +03:00
2022-10-03 06:26:01 +03:00
post_downsample = postDownScale #@param ['None', 'Original Size', '2', '4']
2022-10-02 06:18:09 +03:00
# Nearest gives sharper results, but may look more pixellated. Lancoz is much higher quality, but result may be less crisp.
2022-10-03 06:26:01 +03:00
#downsample_method = 'Lanczos' #@param ['Nearest', 'Lanczos']
2022-10-02 06:18:09 +03:00
overwrite_prior_runs = True #@param {type: 'boolean'}
gc . collect ( )
torch . cuda . empty_cache ( )
im_og = image
width_og , height_og = im_og . size
#Downsample Pre
2022-10-03 06:26:01 +03:00
downsample_rate = preDownScale
2022-10-02 06:18:09 +03:00
# get system temp directory
width_downsampled_pre = width_og / / downsample_rate
height_downsampled_pre = height_og / / downsample_rate
if downsample_rate != 1 :
print ( f ' Downsampling from [ { width_og } , { height_og } ] to [ { width_downsampled_pre } , { height_downsampled_pre } ] ' )
im_og = im_og . resize ( ( width_downsampled_pre , height_downsampled_pre ) , Image . LANCZOS )
logs = self . run ( model [ " model " ] , im_og , diffMode , diffusion_steps , eta )
sample = logs [ " sample " ]
sample = sample . detach ( ) . cpu ( )
sample = torch . clamp ( sample , - 1. , 1. )
sample = ( sample + 1. ) / 2. * 255
sample = sample . numpy ( ) . astype ( np . uint8 )
sample = np . transpose ( sample , ( 0 , 2 , 3 , 1 ) )
2022-10-03 06:26:01 +03:00
2022-10-02 06:18:09 +03:00
a = Image . fromarray ( sample [ 0 ] )
2022-10-03 06:26:01 +03:00
#Downsample Post
downsample_rate = postDownScale
2022-10-02 06:18:09 +03:00
width , height = a . size
width_downsampled_post = width / / downsample_rate
height_downsampled_post = height / / downsample_rate
if downsample_method == ' Lanczos ' :
aliasing = Image . LANCZOS
else :
aliasing = Image . NEAREST
if downsample_rate != 1 :
print ( f ' Downsampling from [ { width } , { height } ] to [ { width_downsampled_post } , { height_downsampled_post } ] ' )
a = a . resize ( ( width_downsampled_post , height_downsampled_post ) , aliasing )
elif post_downsample == ' Original Size ' :
print ( f ' Downsampling from [ { width } , { height } ] to Original Size [ { width_og } , { height_og } ] ' )
a = a . resize ( ( width_og , height_og ) , aliasing )
2022-10-03 06:26:01 +03:00
2022-10-02 06:18:09 +03:00
del model
gc . collect ( )
torch . cuda . empty_cache ( )
2022-10-03 06:26:01 +03:00
2022-10-02 06:18:09 +03:00
print ( f ' Processing finished! ' )
return a
2022-09-14 00:08:40 +03:00
@torch.no_grad ( )
def log_likelihood ( model , x , sigma_min , sigma_max , extra_args = None , atol = 1e-4 , rtol = 1e-4 ) :
extra_args = { } if extra_args is None else extra_args
s_in = x . new_ones ( [ x . shape [ 0 ] ] )
v = torch . randint_like ( x , 2 ) * 2 - 1
fevals = 0
def ode_fn ( sigma , x ) :
nonlocal fevals
with torch . enable_grad ( ) :
x = x [ 0 ] . detach ( ) . requires_grad_ ( )
denoised = model ( x , sigma * s_in , * * extra_args )
d = to_d ( x , sigma , denoised )
fevals + = 1
grad = torch . autograd . grad ( ( d * v ) . sum ( ) , x ) [ 0 ]
d_ll = ( v * grad ) . flatten ( 1 ) . sum ( 1 )
return d . detach ( ) , d_ll
x_min = x , x . new_zeros ( [ x . shape [ 0 ] ] )
t = x . new_tensor ( [ sigma_min , sigma_max ] )
sol = odeint ( ode_fn , x_min , t , atol = atol , rtol = rtol , method = ' dopri5 ' )
latent , delta_ll = sol [ 0 ] [ - 1 ] , sol [ 1 ] [ - 1 ]
ll_prior = torch . distributions . Normal ( 0 , sigma_max ) . log_prob ( latent ) . flatten ( 1 ) . sum ( 1 )
return ll_prior + delta_ll , { ' fevals ' : fevals }
def create_random_tensors ( shape , seeds ) :
xs = [ ]
for seed in seeds :
torch . manual_seed ( seed )
# randn results depend on device; gpu and cpu get different results for same seed;
# the way I see it, it's better to do this on CPU, so that everyone gets same result;
# but the original script had it like this so i do not dare change it for now because
# it will break everyone's seeds.
2022-09-14 16:40:56 +03:00
xs . append ( torch . randn ( shape , device = st . session_state [ ' defaults ' ] . general . gpu ) )
2022-09-14 00:08:40 +03:00
x = torch . stack ( xs )
return x
def torch_gc ( ) :
torch . cuda . empty_cache ( )
torch . cuda . ipc_collect ( )
2022-09-25 10:03:05 +03:00
@retry ( tries = 5 )
2022-10-02 01:40:50 +03:00
#@st.experimental_memo(persist="disk", show_spinner=False, suppress_st_warning=True)
2022-10-03 06:26:01 +03:00
def load_GFPGAN ( model_name = ' GFPGANv1.4 ' ) :
2022-10-02 01:40:50 +03:00
#model_name = 'GFPGANv1.3'
2022-10-03 06:26:01 +03:00
model_path = os . path . join ( st . session_state [ ' defaults ' ] . general . GFPGAN_dir , model_name + ' .pth ' )
2022-10-02 01:40:50 +03:00
2022-10-03 06:26:01 +03:00
#if not os.path.isfile(model_path):
#model_path = os.path.join(st.session_state['defaults'].general.GFPGAN_dir, model_name + '.pth')
2022-10-02 01:40:50 +03:00
2022-09-14 00:08:40 +03:00
if not os . path . isfile ( model_path ) :
raise Exception ( " GFPGAN model not found at path " + model_path )
2022-09-14 16:40:56 +03:00
sys . path . append ( os . path . abspath ( st . session_state [ ' defaults ' ] . general . GFPGAN_dir ) )
2022-09-14 00:08:40 +03:00
from gfpgan import GFPGANer
2022-09-26 07:07:06 +03:00
with server_state_lock [ ' GFPGAN ' ] :
if st . session_state [ ' defaults ' ] . general . gfpgan_cpu or st . session_state [ ' defaults ' ] . general . extra_models_cpu :
2022-10-02 17:54:56 +03:00
server_state [ ' GFPGAN ' ] = GFPGANer ( model_path = model_path , upscale = 1 , arch = ' clean ' ,
2022-10-02 06:18:09 +03:00
channel_multiplier = 2 , bg_upsampler = None , device = torch . device ( ' cpu ' ) )
2022-10-02 01:40:50 +03:00
2022-09-26 07:07:06 +03:00
elif st . session_state [ ' defaults ' ] . general . extra_models_gpu :
2022-10-02 17:54:56 +03:00
server_state [ ' GFPGAN ' ] = GFPGANer ( model_path = model_path , upscale = 1 , arch = ' clean ' , channel_multiplier = 2 , bg_upsampler = None ,
2022-10-02 01:40:50 +03:00
device = torch . device ( f " cuda: { st . session_state [ ' defaults ' ] . general . gfpgan_gpu } " ) )
2022-09-26 07:07:06 +03:00
else :
2022-10-02 17:54:56 +03:00
server_state [ ' GFPGAN ' ] = GFPGANer ( model_path = model_path , upscale = 1 , arch = ' clean ' ,
2022-10-02 06:18:09 +03:00
channel_multiplier = 2 , bg_upsampler = None ,
2022-10-02 01:40:50 +03:00
device = torch . device ( f " cuda: { st . session_state [ ' defaults ' ] . general . gpu } " ) )
# Add the model_name to model loaded so we can later
# check if its the same when we change it on the UI.
server_state [ ' GFPGAN ' ] . name = model_name
2022-09-26 07:07:06 +03:00
return server_state [ ' GFPGAN ' ]
2022-09-14 00:08:40 +03:00
2022-09-25 10:03:05 +03:00
@retry ( tries = 5 )
2022-09-14 00:08:40 +03:00
def load_RealESRGAN ( model_name : str ) :
from basicsr . archs . rrdbnet_arch import RRDBNet
RealESRGAN_models = {
' RealESRGAN_x4plus ' : RRDBNet ( num_in_ch = 3 , num_out_ch = 3 , num_feat = 64 , num_block = 23 , num_grow_ch = 32 , scale = 4 ) ,
' RealESRGAN_x4plus_anime_6B ' : RRDBNet ( num_in_ch = 3 , num_out_ch = 3 , num_feat = 64 , num_block = 6 , num_grow_ch = 32 , scale = 4 )
}
2022-10-04 17:25:47 +03:00
model_path = os . path . join ( st . session_state [ ' defaults ' ] . general . RealESRGAN_dir , model_name + ' .pth ' )
2022-10-02 01:40:50 +03:00
if not os . path . isfile ( model_path ) :
model_path = os . path . join ( st . session_state [ ' defaults ' ] . general . RealESRGAN_dir , model_name + ' .pth ' )
if not os . path . exists ( model_path ) :
2022-09-14 00:08:40 +03:00
raise Exception ( model_name + " .pth not found at path " + model_path )
2022-09-14 16:40:56 +03:00
sys . path . append ( os . path . abspath ( st . session_state [ ' defaults ' ] . general . RealESRGAN_dir ) )
2022-09-14 00:08:40 +03:00
from realesrgan import RealESRGANer
2022-09-26 07:07:06 +03:00
with server_state_lock [ ' RealESRGAN ' ] :
if st . session_state [ ' defaults ' ] . general . esrgan_cpu or st . session_state [ ' defaults ' ] . general . extra_models_cpu :
2022-10-02 01:40:50 +03:00
server_state [ ' RealESRGAN ' ] = RealESRGANer ( scale = 2 , model_path = model_path , model = RealESRGAN_models [ model_name ] ,
pre_pad = 0 , half = False ) # cpu does not support half
2022-09-26 07:07:06 +03:00
server_state [ ' RealESRGAN ' ] . device = torch . device ( ' cpu ' )
server_state [ ' RealESRGAN ' ] . model . to ( ' cpu ' )
2022-10-02 01:40:50 +03:00
2022-09-26 07:07:06 +03:00
elif st . session_state [ ' defaults ' ] . general . extra_models_gpu :
2022-10-02 01:40:50 +03:00
server_state [ ' RealESRGAN ' ] = RealESRGANer ( scale = 2 , model_path = model_path , model = RealESRGAN_models [ model_name ] ,
pre_pad = 0 , half = not st . session_state [ ' defaults ' ] . general . no_half , device = torch . device ( f " cuda: { st . session_state [ ' defaults ' ] . general . esrgan_gpu } " ) )
2022-09-26 07:07:06 +03:00
else :
2022-10-02 01:40:50 +03:00
server_state [ ' RealESRGAN ' ] = RealESRGANer ( scale = 2 , model_path = model_path , model = RealESRGAN_models [ model_name ] ,
pre_pad = 0 , half = not st . session_state [ ' defaults ' ] . general . no_half , device = torch . device ( f " cuda: { st . session_state [ ' defaults ' ] . general . gpu } " ) )
# Add the model_name to model loaded so we can later
# check if its the same when we change it on the UI.
2022-09-26 07:07:06 +03:00
server_state [ ' RealESRGAN ' ] . model . name = model_name
2022-09-14 00:08:40 +03:00
2022-09-26 07:07:06 +03:00
return server_state [ ' RealESRGAN ' ]
2022-09-14 00:08:40 +03:00
2022-09-14 12:45:18 +03:00
#
2022-09-25 10:03:05 +03:00
@retry ( tries = 5 )
2022-10-02 06:18:09 +03:00
def load_LDSR ( model_name = " model " , config = " project " , checking = False ) :
#model_name = 'model'
#yaml_name = 'project'
model_path = os . path . join ( st . session_state [ ' defaults ' ] . general . LDSR_dir , model_name + ' .ckpt ' )
yaml_path = os . path . join ( st . session_state [ ' defaults ' ] . general . LDSR_dir , config + ' .yaml ' )
2022-09-26 07:07:06 +03:00
2022-09-14 12:45:18 +03:00
if not os . path . isfile ( model_path ) :
2022-10-02 06:18:09 +03:00
raise Exception ( " LDSR model not found at path " + model_path )
2022-09-14 12:45:18 +03:00
if not os . path . isfile ( yaml_path ) :
2022-10-02 06:18:09 +03:00
raise Exception ( " LDSR model not found at path " + yaml_path )
2022-09-14 12:45:18 +03:00
if checking == True :
return True
2022-10-02 06:18:09 +03:00
#sys.path.append(os.path.abspath(st.session_state['defaults'].general.LDSR_dir))
#from LDSR import LDSR
server_state [ ' LDSR ' ] = LDSR ( model_path , yaml_path )
2022-09-26 07:07:06 +03:00
2022-10-02 06:18:09 +03:00
server_state [ ' LDSR ' ] . name = model_name
return server_state [ ' LDSR ' ]
2022-09-14 12:45:18 +03:00
#
2022-09-25 10:03:05 +03:00
@retry ( tries = 5 )
2022-10-02 17:54:56 +03:00
#def try_loading_LDSR(model_name: str,checking=False):
##LDSR = None
##global LDSR
#if os.path.exists(st.session_state['defaults'].general.LDSR_dir):
#try:
#server_state["LDSR"] = load_LDSR(checking=True) # TODO: Should try to load both models before giving up
#if checking == True:
#print("Found LDSR")
#return True
#print("Latent Diffusion Super Sampling (LDSR) model loaded")
#except Exception:
#import traceback
#print("Error loading LDSR:", file=sys.stderr)
#print(traceback.format_exc(), file=sys.stderr)
#else:
2022-10-05 03:03:06 +03:00
#print("LDSR not found at path, please make sure you have cloned the LDSR repo to ./models/ldsr/")
2022-09-14 12:45:18 +03:00
#try_loading_LDSR('model',checking=True)
2022-09-14 18:22:24 +03:00
2022-09-25 10:03:05 +03:00
#@retry(tries=5)
2022-09-30 22:40:52 +03:00
def load_sd_model ( model_name : str ) :
2022-10-02 01:40:50 +03:00
""" Loads Stable Diffusion model by name """
2022-09-14 18:22:24 +03:00
ckpt_path = st . session_state . defaults . general . default_model_path
2022-09-25 10:03:05 +03:00
2022-09-14 18:22:24 +03:00
if model_name != st . session_state . defaults . general . default_model :
ckpt_path = os . path . join ( " models " , " custom " , f " { model_name } .ckpt " )
if st . session_state . defaults . general . optimized :
config = OmegaConf . load ( st . session_state . defaults . general . optimized_config )
sd = load_sd_from_config ( ckpt_path )
2022-09-14 12:45:18 +03:00
li , lo = [ ] , [ ]
for key , v_ in sd . items ( ) :
sp = key . split ( ' . ' )
2022-09-14 18:22:24 +03:00
if ( sp [ 0 ] ) == ' model ' :
if ' input_blocks ' in sp :
2022-09-14 12:45:18 +03:00
li . append ( key )
2022-09-14 18:22:24 +03:00
elif ' middle_block ' in sp :
2022-09-14 12:45:18 +03:00
li . append ( key )
2022-09-14 18:22:24 +03:00
elif ' time_embed ' in sp :
2022-09-14 12:45:18 +03:00
li . append ( key )
else :
lo . append ( key )
for key in li :
sd [ ' model1. ' + key [ 6 : ] ] = sd . pop ( key )
for key in lo :
sd [ ' model2. ' + key [ 6 : ] ] = sd . pop ( key )
2022-09-14 18:22:24 +03:00
device = torch . device ( f " cuda: { st . session_state . defaults . general . gpu } " ) \
if torch . cuda . is_available ( ) else torch . device ( " cpu " )
2022-09-14 12:45:18 +03:00
model = instantiate_from_config ( config . modelUNet )
_ , _ = model . load_state_dict ( sd , strict = False )
model . cuda ( )
model . eval ( )
2022-09-14 18:22:24 +03:00
model . turbo = st . session_state . defaults . general . optimized_turbo
2022-09-14 12:45:18 +03:00
modelCS = instantiate_from_config ( config . modelCondStage )
_ , _ = modelCS . load_state_dict ( sd , strict = False )
modelCS . cond_stage_model . device = device
modelCS . eval ( )
modelFS = instantiate_from_config ( config . modelFirstStage )
_ , _ = modelFS . load_state_dict ( sd , strict = False )
modelFS . eval ( )
del sd
2022-09-14 18:22:24 +03:00
if not st . session_state . defaults . general . no_half :
2022-09-19 10:02:21 +03:00
model = model . half ( ) . to ( device )
modelCS = modelCS . half ( ) . to ( device )
modelFS = modelFS . half ( ) . to ( device )
2022-09-14 18:22:24 +03:00
return config , device , model , modelCS , modelFS
2022-09-14 12:45:18 +03:00
else :
2022-09-14 18:22:24 +03:00
config = OmegaConf . load ( st . session_state . defaults . general . default_model_config )
model = load_model_from_config ( config , ckpt_path )
2022-09-14 12:45:18 +03:00
2022-09-14 18:22:24 +03:00
device = torch . device ( f " cuda: { st . session_state . defaults . general . gpu } " ) \
if torch . cuda . is_available ( ) else torch . device ( " cpu " )
model = ( model if st . session_state . defaults . general . no_half
else model . half ( ) ) . to ( device )
2022-09-14 12:45:18 +03:00
2022-09-14 18:22:24 +03:00
return config , device , model , None , None
2022-09-14 12:45:18 +03:00
2022-09-14 18:22:24 +03:00
2022-09-14 12:45:18 +03:00
def ModelLoader ( models , load = False , unload = False , imgproc_realesrgan_model_name = ' RealESRGAN_x4plus ' ) :
2022-10-02 01:40:50 +03:00
#codedealer: No usages
2022-09-14 12:45:18 +03:00
#get global variables
global_vars = globals ( )
#check if m is in globals
if unload :
for m in models :
if m in global_vars :
#if it is, delete it
del global_vars [ m ]
2022-09-14 16:40:56 +03:00
if st . session_state [ ' defaults ' ] . general . optimized :
2022-09-14 12:45:18 +03:00
if m == ' model ' :
del global_vars [ m + ' FS ' ]
del global_vars [ m + ' CS ' ]
2022-09-14 18:22:24 +03:00
if m == ' model ' :
m = ' Stable Diffusion '
2022-09-14 12:45:18 +03:00
print ( ' Unloaded ' + m )
if load :
for m in models :
if m not in global_vars or m in global_vars and type ( global_vars [ m ] ) == bool :
#if it isn't, load it
if m == ' GFPGAN ' :
global_vars [ m ] = load_GFPGAN ( )
elif m == ' model ' :
sdLoader = load_sd_from_config ( )
global_vars [ m ] = sdLoader [ 0 ]
2022-09-14 16:40:56 +03:00
if st . session_state [ ' defaults ' ] . general . optimized :
2022-09-14 12:45:18 +03:00
global_vars [ m + ' CS ' ] = sdLoader [ 1 ]
global_vars [ m + ' FS ' ] = sdLoader [ 2 ]
elif m == ' RealESRGAN ' :
global_vars [ m ] = load_RealESRGAN ( imgproc_realesrgan_model_name )
elif m == ' LDSR ' :
global_vars [ m ] = load_LDSR ( )
if m == ' model ' :
m = ' Stable Diffusion '
print ( ' Loaded ' + m )
torch_gc ( )
#
@retry ( tries = 5 )
def generation_callback ( img , i = 0 ) :
2022-09-17 02:29:10 +03:00
if " update_preview_frequency " not in st . session_state :
2022-09-18 01:25:55 +03:00
raise StopException
2022-09-14 12:45:18 +03:00
try :
if i == 0 :
if img [ ' i ' ] : i = img [ ' i ' ]
except TypeError :
pass
2022-09-19 21:05:18 +03:00
if st . session_state . update_preview and \
int ( st . session_state . update_preview_frequency ) > 0 and \
i % int ( st . session_state . update_preview_frequency ) == 0 and \
i > 0 :
2022-09-14 12:45:18 +03:00
#print (img)
#print (type(img))
# The following lines will convert the tensor we got on img to an actual image we can render on the UI.
# It can probably be done in a better way for someone who knows what they're doing. I don't.
#print (img,isinstance(img, torch.Tensor))
if isinstance ( img , torch . Tensor ) :
2022-09-25 10:03:05 +03:00
x_samples_ddim = ( server_state [ " model " ] . to ( ' cuda ' ) if not st . session_state [ ' defaults ' ] . general . optimized else server_state [ " modelFS " ] . to ( ' cuda ' )
2022-09-19 10:02:21 +03:00
) . decode_first_stage ( img ) . to ( ' cuda ' )
2022-09-14 12:45:18 +03:00
else :
# When using the k Diffusion samplers they return a dict instead of a tensor that look like this:
2022-09-19 10:02:21 +03:00
# {'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}
2022-09-25 10:03:05 +03:00
x_samples_ddim = ( server_state [ " model " ] . to ( ' cuda ' ) if not st . session_state [ ' defaults ' ] . general . optimized else server_state [ " modelFS " ] . to ( ' cuda ' )
2022-09-19 10:02:21 +03:00
) . decode_first_stage ( img [ " denoised " ] ) . to ( ' cuda ' )
2022-09-14 12:45:18 +03:00
x_samples_ddim = torch . clamp ( ( x_samples_ddim + 1.0 ) / 2.0 , min = 0.0 , max = 1.0 )
2022-09-19 10:02:21 +03:00
2022-09-17 02:12:52 +03:00
if x_samples_ddim . ndimension ( ) == 4 :
pil_images = [ transforms . ToPILImage ( ) ( x . squeeze_ ( 0 ) ) for x in x_samples_ddim ]
pil_image = image_grid ( pil_images , 1 )
else :
pil_image = transforms . ToPILImage ( ) ( x_samples_ddim . squeeze_ ( 0 ) )
2022-09-19 10:02:21 +03:00
2022-09-14 12:45:18 +03:00
# update image on the UI so we can see the progress
st . session_state [ " preview_image " ] . image ( pil_image )
# Show a progress bar so we can keep track of the progress even when the image progress is not been shown,
# Dont worry, it doesnt affect the performance.
if st . session_state [ " generation_mode " ] == " txt2img " :
percent = int ( 100 * float ( i + 1 if i + 1 < st . session_state . sampling_steps else st . session_state . sampling_steps ) / float ( st . session_state . sampling_steps ) )
st . session_state [ " progress_bar_text " ] . text (
f " Running step: { i + 1 if i + 1 < st . session_state . sampling_steps else st . session_state . sampling_steps } / { st . session_state . sampling_steps } { percent if percent < 100 else 100 } % " )
else :
if st . session_state [ " generation_mode " ] == " img2img " :
round_sampling_steps = round ( st . session_state . sampling_steps * st . session_state [ " denoising_strength " ] )
percent = int ( 100 * float ( i + 1 if i + 1 < round_sampling_steps else round_sampling_steps ) / float ( round_sampling_steps ) )
st . session_state [ " progress_bar_text " ] . text (
f """ Running step: { i + 1 if i + 1 < round_sampling_steps else round_sampling_steps } / { round_sampling_steps } { percent if percent < 100 else 100 } % """ )
else :
if st . session_state [ " generation_mode " ] == " txt2vid " :
percent = int ( 100 * float ( i + 1 if i + 1 < st . session_state . sampling_steps else st . session_state . sampling_steps ) / float ( st . session_state . sampling_steps ) )
st . session_state [ " progress_bar_text " ] . text (
f " Running step: { i + 1 if i + 1 < st . session_state . sampling_steps else st . session_state . sampling_steps } / { st . session_state . sampling_steps } "
f " { percent if percent < 100 else 100 } % " )
st . session_state [ " progress_bar " ] . progress ( percent if percent < 100 else 100 )
2022-09-14 00:08:40 +03:00
prompt_parser = re . compile ( """
( ? P < prompt > # capture group for 'prompt'
[ ^ : ] + # match one or more non ':' characters
) # end 'prompt'
( ? : # non-capture group
: + # match one or more ':' characters
( ? P < weight > # capture group for 'weight'
- ? \\d + ( ? : \\. \\d + ) ? # match positive or negative decimal number
) ? # end weight capture group, make optional
\\s * # strip spaces after weight
| # OR
$ # else, if no ':' then match end of line
) # end non-capture group
""" , re.VERBOSE)
def split_weighted_subprompts ( input_string , normalize = True ) :
2022-10-02 01:40:50 +03:00
# grabs all text up to the first occurrence of ':' as sub-prompt
# takes the value following ':' as weight
# if ':' has no value defined, defaults to 1.0
# repeats until no text remaining
2022-09-14 00:08:40 +03:00
parsed_prompts = [ ( match . group ( " prompt " ) , float ( match . group ( " weight " ) or 1 ) ) for match in re . finditer ( prompt_parser , input_string ) ]
if not normalize :
return parsed_prompts
# this probably still doesn't handle negative weights very well
weight_sum = sum ( map ( lambda x : x [ 1 ] , parsed_prompts ) )
return [ ( x [ 0 ] , x [ 1 ] / weight_sum ) for x in parsed_prompts ]
def slerp ( device , t , v0 : torch . Tensor , v1 : torch . Tensor , DOT_THRESHOLD = 0.9995 ) :
v0 = v0 . detach ( ) . cpu ( ) . numpy ( )
v1 = v1 . detach ( ) . cpu ( ) . numpy ( )
dot = np . sum ( v0 * v1 / ( np . linalg . norm ( v0 ) * np . linalg . norm ( v1 ) ) )
if np . abs ( dot ) > DOT_THRESHOLD :
v2 = ( 1 - t ) * v0 + t * v1
else :
theta_0 = np . arccos ( dot )
sin_theta_0 = np . sin ( theta_0 )
theta_t = theta_0 * t
sin_theta_t = np . sin ( theta_t )
s0 = np . sin ( theta_0 - theta_t ) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
v2 = torch . from_numpy ( v2 ) . to ( device )
return v2
#
2022-09-25 10:03:05 +03:00
@st.experimental_memo ( persist = " disk " , show_spinner = False , suppress_st_warning = True )
2022-09-15 03:17:07 +03:00
def optimize_update_preview_frequency ( current_chunk_speed , previous_chunk_speed_list , update_preview_frequency , update_preview_frequency_list ) :
2022-09-14 00:08:40 +03:00
""" Find the optimal update_preview_frequency value maximizing
performance while minimizing the time between updates . """
2022-09-15 03:17:07 +03:00
from statistics import mean
previous_chunk_avg_speed = mean ( previous_chunk_speed_list )
previous_chunk_speed_list . append ( current_chunk_speed )
current_chunk_avg_speed = mean ( previous_chunk_speed_list )
if current_chunk_avg_speed > = previous_chunk_avg_speed :
2022-09-14 00:08:40 +03:00
#print(f"{current_chunk_speed} >= {previous_chunk_speed}")
2022-09-15 03:17:07 +03:00
update_preview_frequency_list . append ( update_preview_frequency + 1 )
2022-09-14 00:08:40 +03:00
else :
#print(f"{current_chunk_speed} <= {previous_chunk_speed}")
2022-09-15 03:17:07 +03:00
update_preview_frequency_list . append ( update_preview_frequency - 1 )
update_preview_frequency = round ( mean ( update_preview_frequency_list ) )
2022-09-14 00:08:40 +03:00
2022-09-15 03:17:07 +03:00
return current_chunk_speed , previous_chunk_speed_list , update_preview_frequency , update_preview_frequency_list
2022-09-14 00:08:40 +03:00
def get_font ( fontsize ) :
fonts = [ " arial.ttf " , " DejaVuSans.ttf " ]
for font_name in fonts :
try :
return ImageFont . truetype ( font_name , fontsize )
except OSError :
pass
# ImageFont.load_default() is practically unusable as it only supports
# latin1, so raise an exception instead if no usable font was found
raise Exception ( f " No usable font found (tried { ' , ' . join ( fonts ) } ) " )
def load_embeddings ( fp ) :
2022-09-25 10:03:05 +03:00
if fp is not None and hasattr ( server_state [ " model " ] , " embedding_manager " ) :
server_state [ " model " ] . embedding_manager . load ( fp [ ' name ' ] )
2022-09-14 00:08:40 +03:00
2022-09-18 01:25:55 +03:00
def load_learned_embed_in_clip ( learned_embeds_path , text_encoder , tokenizer , token = None ) :
loaded_learned_embeds = torch . load ( learned_embeds_path , map_location = " cpu " )
# separate token and the embeds
if learned_embeds_path . endswith ( ' .pt ' ) :
2022-10-06 04:40:36 +03:00
# old format
# token = * so replace with file directory name when converting
trained_token = os . path . basename ( learned_embeds_path )
params_dict = {
trained_token : torch . tensor ( list ( loaded_learned_embeds [ ' string_to_param ' ] . items ( ) ) [ 0 ] [ 1 ] )
}
learned_embeds_path = os . path . splitext ( learned_embeds_path ) [ 0 ] + ' .bin '
torch . save ( params_dict , learned_embeds_path )
loaded_learned_embeds = torch . load ( learned_embeds_path , map_location = " cpu " )
trained_token = list ( loaded_learned_embeds . keys ( ) ) [ 0 ]
embeds = loaded_learned_embeds [ trained_token ]
2022-09-18 01:25:55 +03:00
elif learned_embeds_path . endswith ( ' .bin ' ) :
trained_token = list ( loaded_learned_embeds . keys ( ) ) [ 0 ]
embeds = loaded_learned_embeds [ trained_token ]
embeds = loaded_learned_embeds [ trained_token ]
# cast to dtype of text_encoder
dtype = text_encoder . get_input_embeddings ( ) . weight . dtype
embeds . to ( dtype )
# add the token in tokenizer
token = token if token is not None else trained_token
num_added_tokens = tokenizer . add_tokens ( token )
# resize the token embeddings
text_encoder . resize_token_embeddings ( len ( tokenizer ) )
# get the id for the token and assign the embeds
token_id = tokenizer . convert_tokens_to_ids ( token )
text_encoder . get_input_embeddings ( ) . weight . data [ token_id ] = embeds
return token
2022-09-14 00:08:40 +03:00
def image_grid ( imgs , batch_size , force_n_rows = None , captions = None ) :
#print (len(imgs))
if force_n_rows is not None :
rows = force_n_rows
2022-09-14 16:40:56 +03:00
elif st . session_state [ ' defaults ' ] . general . n_rows > 0 :
rows = st . session_state [ ' defaults ' ] . general . n_rows
elif st . session_state [ ' defaults ' ] . general . n_rows == 0 :
2022-09-14 00:08:40 +03:00
rows = batch_size
else :
rows = math . sqrt ( len ( imgs ) )
rows = round ( rows )
cols = math . ceil ( len ( imgs ) / rows )
w , h = imgs [ 0 ] . size
grid = Image . new ( ' RGB ' , size = ( cols * w , rows * h ) , color = ' black ' )
fnt = get_font ( 30 )
for i , img in enumerate ( imgs ) :
grid . paste ( img , box = ( i % cols * w , i / / cols * h ) )
if captions and i < len ( captions ) :
d = ImageDraw . Draw ( grid )
size = d . textbbox ( ( 0 , 0 ) , captions [ i ] , font = fnt , stroke_width = 2 , align = " center " )
d . multiline_text ( ( i % cols * w + w / 2 , i / / cols * h + h - size [ 3 ] ) , captions [ i ] , font = fnt , fill = ( 255 , 255 , 255 ) , stroke_width = 2 , stroke_fill = ( 0 , 0 , 0 ) , anchor = " mm " , align = " center " )
return grid
def seed_to_int ( s ) :
if type ( s ) is int :
return s
if s is None or s == ' ' :
return random . randint ( 0 , 2 * * 32 - 1 )
if type ( s ) is list :
seed_list = [ ]
for seed in s :
if seed is None or seed == ' ' :
seed_list . append ( random . randint ( 0 , 2 * * 32 - 1 ) )
else :
seed_list = s
return seed_list
n = abs ( int ( s ) if s . isdigit ( ) else random . Random ( s ) . randint ( 0 , 2 * * 32 - 1 ) )
while n > = 2 * * 32 :
n = n >> 32
return n
2022-09-14 12:45:18 +03:00
#
def draw_prompt_matrix ( im , width , height , all_prompts ) :
def wrap ( text , d , font , line_length ) :
lines = [ ' ' ]
for word in text . split ( ) :
line = f ' { lines [ - 1 ] } { word } ' . strip ( )
if d . textlength ( line , font = font ) < = line_length :
lines [ - 1 ] = line
else :
lines . append ( word )
return ' \n ' . join ( lines )
def draw_texts ( pos , x , y , texts , sizes ) :
for i , ( text , size ) in enumerate ( zip ( texts , sizes ) ) :
active = pos & ( 1 << i ) != 0
if not active :
text = ' \u0336 ' . join ( text ) + ' \u0336 '
d . multiline_text ( ( x , y + size [ 1 ] / 2 ) , text , font = fnt , fill = color_active if active else color_inactive , anchor = " mm " , align = " center " )
y + = size [ 1 ] + line_spacing
fontsize = ( width + height ) / / 25
line_spacing = fontsize / / 2
fnt = get_font ( fontsize )
color_active = ( 0 , 0 , 0 )
color_inactive = ( 153 , 153 , 153 )
pad_top = height / / 4
pad_left = width * 3 / / 4 if len ( all_prompts ) > 2 else 0
cols = im . width / / width
rows = im . height / / height
prompts = all_prompts [ 1 : ]
result = Image . new ( " RGB " , ( im . width + pad_left , im . height + pad_top ) , " white " )
result . paste ( im , ( pad_left , pad_top ) )
d = ImageDraw . Draw ( result )
boundary = math . ceil ( len ( prompts ) / 2 )
prompts_horiz = [ wrap ( x , d , fnt , width ) for x in prompts [ : boundary ] ]
prompts_vert = [ wrap ( x , d , fnt , pad_left ) for x in prompts [ boundary : ] ]
sizes_hor = [ ( x [ 2 ] - x [ 0 ] , x [ 3 ] - x [ 1 ] ) for x in [ d . multiline_textbbox ( ( 0 , 0 ) , x , font = fnt ) for x in prompts_horiz ] ]
sizes_ver = [ ( x [ 2 ] - x [ 0 ] , x [ 3 ] - x [ 1 ] ) for x in [ d . multiline_textbbox ( ( 0 , 0 ) , x , font = fnt ) for x in prompts_vert ] ]
hor_text_height = sum ( [ x [ 1 ] + line_spacing for x in sizes_hor ] ) - line_spacing
ver_text_height = sum ( [ x [ 1 ] + line_spacing for x in sizes_ver ] ) - line_spacing
for col in range ( cols ) :
x = pad_left + width * col + width / 2
y = pad_top / 2 - hor_text_height / 2
draw_texts ( col , x , y , prompts_horiz , sizes_hor )
for row in range ( rows ) :
x = pad_left / 2
y = pad_top + height * row + height / 2 - ver_text_height / 2
draw_texts ( row , x , y , prompts_vert , sizes_ver )
return result
2022-09-24 15:11:33 +03:00
#
def enable_minimal_memory_usage ( model ) :
""" Moves only unet to fp16 and to CUDA, while keepping lighter models on CPUs """
model . unet . to ( torch . float16 ) . to ( torch . device ( " cuda " ) )
model . enable_attention_slicing ( 1 )
torch . cuda . empty_cache ( )
torch_gc ( )
2022-09-14 00:08:40 +03:00
def check_prompt_length ( prompt , comments ) :
""" this function tests if prompt is too long, and if so, adds a message to comments """
2022-09-25 10:03:05 +03:00
tokenizer = ( server_state [ " model " ] if not st . session_state [ ' defaults ' ] . general . optimized else server_state [ " modelCS " ] ) . cond_stage_model . tokenizer
max_length = ( server_state [ " model " ] if not st . session_state [ ' defaults ' ] . general . optimized else server_state [ " modelCS " ] ) . cond_stage_model . max_length
2022-09-14 00:08:40 +03:00
2022-09-25 10:03:05 +03:00
info = ( server_state [ " model " ] if not st . session_state [ ' defaults ' ] . general . optimized else server_state [ " modelCS " ] ) . cond_stage_model . tokenizer ( [ prompt ] , truncation = True , max_length = max_length ,
2022-09-14 00:08:40 +03:00
return_overflowing_tokens = True , padding = " max_length " , return_tensors = " pt " )
ovf = info [ ' overflowing_tokens ' ] [ 0 ]
overflowing_count = ovf . shape [ 0 ]
if overflowing_count == 0 :
return
vocab = { v : k for k , v in tokenizer . get_vocab ( ) . items ( ) }
overflowing_words = [ vocab . get ( int ( x ) , " " ) for x in ovf ]
overflowing_text = tokenizer . convert_tokens_to_string ( ' ' . join ( overflowing_words ) )
comments . append ( f " Warning: too many input tokens; some ( { len ( overflowing_words ) } ) have been truncated: \n { overflowing_text } \n " )
2022-09-24 15:11:33 +03:00
#
def custom_models_available ( ) :
2022-09-29 13:29:44 +03:00
with server_state_lock [ " custom_models " ] :
#
# Allow for custom models to be used instead of the default one,
# an example would be Waifu-Diffusion or any other fine tune of stable diffusion
server_state [ " custom_models " ] : sorted = [ ]
for root , dirs , files in os . walk ( os . path . join ( " models " , " custom " ) ) :
for file in files :
if os . path . splitext ( file ) [ 1 ] == ' .ckpt ' :
server_state [ " custom_models " ] . append ( os . path . splitext ( file ) [ 0 ] )
with server_state_lock [ " CustomModel_available " ] :
if len ( server_state [ " custom_models " ] ) > 0 :
server_state [ " CustomModel_available " ] = True
server_state [ " custom_models " ] . append ( " Stable Diffusion v1.4 " )
else :
2022-10-02 01:40:50 +03:00
server_state [ " CustomModel_available " ] = False
#
def GFPGAN_available ( ) :
#with server_state_lock["GFPGAN_models"]:
#
# Allow for custom models to be used instead of the default one,
# an example would be Waifu-Diffusion or any other fine tune of stable diffusion
st . session_state [ " GFPGAN_models " ] : sorted = [ ]
2022-10-04 17:25:47 +03:00
model = st . session_state [ " defaults " ] . model_manager . models . gfpgan
files_available = 0
for file in model [ ' files ' ] :
if " save_location " in model [ ' files ' ] [ file ] :
if os . path . exists ( os . path . join ( model [ ' files ' ] [ file ] [ ' save_location ' ] , model [ ' files ' ] [ file ] [ ' file_name ' ] ) ) :
files_available + = 1
elif os . path . exists ( os . path . join ( model [ ' save_location ' ] , model [ ' files ' ] [ file ] [ ' file_name ' ] ) ) :
base_name = os . path . splitext ( model [ ' files ' ] [ file ] [ ' file_name ' ] ) [ 0 ]
if " GFPGANv " in base_name :
st . session_state [ " GFPGAN_models " ] . append ( base_name )
files_available + = 1
if len ( st . session_state [ " GFPGAN_models " ] ) > 0 and files_available == len ( model [ ' files ' ] ) :
2022-10-02 01:40:50 +03:00
st . session_state [ " GFPGAN_available " ] = True
else :
st . session_state [ " GFPGAN_available " ] = False
#
def RealESRGAN_available ( ) :
#with server_state_lock["RealESRGAN_models"]:
#
# Allow for custom models to be used instead of the default one,
# an example would be Waifu-Diffusion or any other fine tune of stable diffusion
st . session_state [ " RealESRGAN_models " ] : sorted = [ ]
2022-10-04 17:25:47 +03:00
model = st . session_state [ " defaults " ] . model_manager . models . realesrgan
for file in model [ ' files ' ] :
if os . path . exists ( os . path . join ( model [ ' save_location ' ] , model [ ' files ' ] [ file ] [ ' file_name ' ] ) ) :
base_name = os . path . splitext ( model [ ' files ' ] [ file ] [ ' file_name ' ] ) [ 0 ]
st . session_state [ " RealESRGAN_models " ] . append ( base_name )
2022-10-02 01:40:50 +03:00
2022-10-04 17:25:47 +03:00
if len ( st . session_state [ " RealESRGAN_models " ] ) > 0 :
2022-10-02 01:40:50 +03:00
st . session_state [ " RealESRGAN_available " ] = True
else :
st . session_state [ " RealESRGAN_available " ] = False
2022-10-02 06:18:09 +03:00
#
def LDSR_available ( ) :
#with server_state_lock["RealESRGAN_models"]:
#
# Allow for custom models to be used instead of the default one,
# an example would be Waifu-Diffusion or any other fine tune of stable diffusion
st . session_state [ " LDSR_models " ] : sorted = [ ]
2022-10-04 17:25:47 +03:00
files_available = 0
model = st . session_state [ " defaults " ] . model_manager . models . ldsr
for file in model [ ' files ' ] :
if os . path . exists ( os . path . join ( model [ ' save_location ' ] , model [ ' files ' ] [ file ] [ ' file_name ' ] ) ) :
base_name = os . path . splitext ( model [ ' files ' ] [ file ] [ ' file_name ' ] ) [ 0 ]
extension = os . path . splitext ( model [ ' files ' ] [ file ] [ ' file_name ' ] ) [ 1 ]
if extension == " .ckpt " :
st . session_state [ " LDSR_models " ] . append ( base_name )
files_available + = 1
if files_available == len ( model [ ' files ' ] ) :
2022-10-02 06:18:09 +03:00
st . session_state [ " LDSR_available " ] = True
else :
2022-10-04 17:25:47 +03:00
st . session_state [ " LDSR_available " ] = False
2022-10-02 06:18:09 +03:00
2022-09-24 15:11:33 +03:00
2022-09-14 00:08:40 +03:00
def save_sample ( image , sample_path_i , filename , jpg_sample , prompts , seeds , width , height , steps , cfg_scale ,
normalize_prompt_weights , use_GFPGAN , write_info_files , prompt_matrix , init_img , uses_loopback , uses_random_seed_loopback ,
2022-09-18 12:34:37 +03:00
save_grid , sort_samples , sampler_name , ddim_eta , n_iter , batch_size , i , denoising_strength , resize_mode , save_individual_images , model_name ) :
2022-09-14 00:08:40 +03:00
filename_i = os . path . join ( sample_path_i , filename )
2022-09-14 16:40:56 +03:00
if st . session_state [ ' defaults ' ] . general . save_metadata or write_info_files :
2022-09-14 00:08:40 +03:00
# toggles differ for txt2img vs. img2img:
offset = 0 if init_img is None else 2
toggles = [ ]
if prompt_matrix :
toggles . append ( 0 )
if normalize_prompt_weights :
toggles . append ( 1 )
if init_img is not None :
if uses_loopback :
toggles . append ( 2 )
if uses_random_seed_loopback :
toggles . append ( 3 )
if save_individual_images :
toggles . append ( 2 + offset )
if save_grid :
toggles . append ( 3 + offset )
if sort_samples :
toggles . append ( 4 + offset )
if write_info_files :
toggles . append ( 5 + offset )
if use_GFPGAN :
toggles . append ( 6 + offset )
metadata = \
dict (
target = " txt2img " if init_img is None else " img2img " ,
prompt = prompts [ i ] , ddim_steps = steps , toggles = toggles , sampler_name = sampler_name ,
ddim_eta = ddim_eta , n_iter = n_iter , batch_size = batch_size , cfg_scale = cfg_scale ,
2022-09-25 10:03:05 +03:00
seed = seeds [ i ] , width = width , height = height , normalize_prompt_weights = normalize_prompt_weights , model_name = server_state [ " loaded_model " ] )
2022-09-14 00:08:40 +03:00
# Not yet any use for these, but they bloat up the files:
# info_dict["init_img"] = init_img
# info_dict["init_mask"] = init_mask
if init_img is not None :
metadata [ " denoising_strength " ] = str ( denoising_strength )
metadata [ " resize_mode " ] = resize_mode
if write_info_files :
with open ( f " { filename_i } .yaml " , " w " , encoding = " utf8 " ) as f :
yaml . dump ( metadata , f , allow_unicode = True , width = 10000 )
2022-09-14 16:40:56 +03:00
if st . session_state [ ' defaults ' ] . general . save_metadata :
2022-09-14 00:08:40 +03:00
# metadata = {
# "SD:prompt": prompts[i],
# "SD:seed": str(seeds[i]),
# "SD:width": str(width),
# "SD:height": str(height),
# "SD:steps": str(steps),
# "SD:cfg_scale": str(cfg_scale),
# "SD:normalize_prompt_weights": str(normalize_prompt_weights),
# }
metadata = { " SD: " + k : v for ( k , v ) in metadata . items ( ) }
if save_ext == " png " :
mdata = PngInfo ( )
for key in metadata :
mdata . add_text ( key , str ( metadata [ key ] ) )
image . save ( f " { filename_i } .png " , pnginfo = mdata )
else :
if jpg_sample :
image . save ( f " { filename_i } .jpg " , quality = save_quality ,
optimize = True )
elif save_ext == " webp " :
image . save ( f " { filename_i } . { save_ext } " , f " webp " , quality = save_quality ,
lossless = save_lossless )
else :
# not sure what file format this is
image . save ( f " { filename_i } . { save_ext } " , f " { save_ext } " )
try :
exif_dict = piexif . load ( f " { filename_i } . { save_ext } " )
except :
exif_dict = { " Exif " : dict ( ) }
exif_dict [ " Exif " ] [ piexif . ExifIFD . UserComment ] = piexif . helper . UserComment . dump (
json . dumps ( metadata ) , encoding = " unicode " )
piexif . insert ( piexif . dump ( exif_dict ) , f " { filename_i } . { save_ext } " )
def get_next_sequence_number ( path , prefix = ' ' ) :
"""
Determines and returns the next sequence number to use when saving an
image in the specified directory .
If a prefix is given , only consider files whose names start with that
prefix , and strip the prefix from filenames before extracting their
sequence number .
The sequence starts at 0.
"""
result = - 1
for p in Path ( path ) . iterdir ( ) :
if p . name . endswith ( ( ' .png ' , ' .jpg ' ) ) and p . name . startswith ( prefix ) :
tmp = p . name [ len ( prefix ) : ]
try :
result = max ( int ( tmp . split ( ' - ' ) [ 0 ] ) , result )
except ValueError :
pass
return result + 1
def oxlamon_matrix ( prompt , seed , n_iter , batch_size ) :
pattern = re . compile ( r ' (, \ s) { 2,} ' )
class PromptItem :
def __init__ ( self , text , parts , item ) :
self . text = text
self . parts = parts
if item :
self . parts . append ( item )
def clean ( txt ) :
return re . sub ( pattern , ' , ' , txt )
def getrowcount ( txt ) :
for data in re . finditer ( " .*? \\ ((.*?) \\ ).* " , txt ) :
if data :
return len ( data . group ( 1 ) . split ( " | " ) )
break
return None
def repliter ( txt ) :
for data in re . finditer ( " .*? \\ ((.*?) \\ ).* " , txt ) :
if data :
r = data . span ( 1 )
for item in data . group ( 1 ) . split ( " | " ) :
yield ( clean ( txt [ : r [ 0 ] - 1 ] + item . strip ( ) + txt [ r [ 1 ] + 1 : ] ) , item . strip ( ) )
break
def iterlist ( items ) :
outitems = [ ]
for item in items :
for newitem , newpart in repliter ( item . text ) :
outitems . append ( PromptItem ( newitem , item . parts . copy ( ) , newpart ) )
return outitems
def getmatrix ( prompt ) :
dataitems = [ PromptItem ( prompt [ 1 : ] . strip ( ) , [ ] , None ) ]
while True :
newdataitems = iterlist ( dataitems )
if len ( newdataitems ) == 0 :
return dataitems
dataitems = newdataitems
def classToArrays ( items , seed , n_iter ) :
texts = [ ]
parts = [ ]
seeds = [ ]
for item in items :
itemseed = seed
for i in range ( n_iter ) :
texts . append ( item . text )
parts . append ( f " Seed: { itemseed } \n " + " \n " . join ( item . parts ) )
seeds . append ( itemseed )
itemseed + = 1
return seeds , texts , parts
all_seeds , all_prompts , prompt_matrix_parts = classToArrays ( getmatrix ( prompt ) , seed , n_iter )
n_iter = math . ceil ( len ( all_prompts ) / batch_size )
needrows = getrowcount ( prompt )
if needrows :
xrows = math . sqrt ( len ( all_prompts ) )
xrows = round ( xrows )
# if columns is to much
cols = math . ceil ( len ( all_prompts ) / xrows )
if cols > needrows * 4 :
needrows * = 2
return all_seeds , n_iter , prompt_matrix_parts , all_prompts , needrows
#
def process_images (
outpath , func_init , func_sample , prompt , seed , sampler_name , save_grid , batch_size ,
2022-10-03 06:26:01 +03:00
n_iter , steps , cfg_scale , width , height , prompt_matrix , use_GFPGAN : bool = True , GFPGAN_model : str = ' GFPGANv1.4 ' ,
2022-10-02 17:54:56 +03:00
use_RealESRGAN : bool = False , realesrgan_model_name : str = ' RealESRGAN_x4plus ' ,
use_LDSR : bool = False , LDSR_model_name : str = ' model ' , ddim_eta = 0.0 , normalize_prompt_weights = True , init_img = None , init_mask = None ,
2022-09-14 00:08:40 +03:00
mask_blur_strength = 3 , mask_restore = False , denoising_strength = 0.75 , noise_mode = 0 , find_noise_steps = 1 , resize_mode = None , uses_loopback = False ,
uses_random_seed_loopback = False , sort_samples = True , write_info_files = True , jpg_sample = False ,
variant_amount = 0.0 , variant_seed = None , save_individual_images : bool = True ) :
""" this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch """
2022-10-02 17:54:56 +03:00
2022-09-14 00:08:40 +03:00
torch_gc ( )
# start time after garbage collection (or before?)
start_time = time . time ( )
# We will use this date here later for the folder name, need to start_time if not need
run_start_dt = datetime . datetime . now ( )
mem_mon = MemUsageMonitor ( ' MemMon ' )
mem_mon . start ( )
2022-09-18 01:25:55 +03:00
if st . session_state . defaults . general . use_sd_concepts_library :
2022-09-14 00:08:40 +03:00
2022-09-18 01:25:55 +03:00
prompt_tokens = re . findall ( ' <([a-zA-Z0-9-]+)> ' , prompt )
2022-09-14 00:08:40 +03:00
2022-09-18 01:25:55 +03:00
if prompt_tokens :
# compviz
2022-09-25 10:03:05 +03:00
tokenizer = ( server_state [ " model " ] if not st . session_state [ ' defaults ' ] . general . optimized else server_state [ " modelCS " ] ) . cond_stage_model . tokenizer
text_encoder = ( server_state [ " model " ] if not st . session_state [ ' defaults ' ] . general . optimized else server_state [ " modelCS " ] ) . cond_stage_model . transformer
2022-09-18 01:25:55 +03:00
# diffusers
#tokenizer = pipe.tokenizer
#text_encoder = pipe.text_encoder
ext = ( ' pt ' , ' bin ' )
if len ( prompt_tokens ) > 1 :
for token_name in prompt_tokens :
embedding_path = os . path . join ( st . session_state [ ' defaults ' ] . general . sd_concepts_library_folder , token_name )
if os . path . exists ( embedding_path ) :
for files in os . listdir ( embedding_path ) :
if files . endswith ( ext ) :
load_learned_embed_in_clip ( f " { os . path . join ( embedding_path , files ) } " , text_encoder , tokenizer , f " < { token_name } > " )
else :
embedding_path = os . path . join ( st . session_state [ ' defaults ' ] . general . sd_concepts_library_folder , prompt_tokens [ 0 ] )
if os . path . exists ( embedding_path ) :
for files in os . listdir ( embedding_path ) :
if files . endswith ( ext ) :
load_learned_embed_in_clip ( f " { os . path . join ( embedding_path , files ) } " , text_encoder , tokenizer , f " < { prompt_tokens [ 0 ] } > " )
2022-09-18 05:02:30 +03:00
#
2022-09-18 01:25:55 +03:00
2022-09-14 00:08:40 +03:00
os . makedirs ( outpath , exist_ok = True )
sample_path = os . path . join ( outpath , " samples " )
os . makedirs ( sample_path , exist_ok = True )
if not ( " | " in prompt ) and prompt . startswith ( " @ " ) :
prompt = prompt [ 1 : ]
2022-09-16 20:25:25 +03:00
negprompt = ' '
if ' ### ' in prompt :
prompt , negprompt = prompt . split ( ' ### ' , 1 )
prompt = prompt . strip ( )
negprompt = negprompt . strip ( )
2022-09-14 00:08:40 +03:00
comments = [ ]
prompt_matrix_parts = [ ]
simple_templating = False
add_original_image = not ( use_RealESRGAN or use_GFPGAN )
if prompt_matrix :
if prompt . startswith ( " @ " ) :
simple_templating = True
add_original_image = not ( use_RealESRGAN or use_GFPGAN )
all_seeds , n_iter , prompt_matrix_parts , all_prompts , frows = oxlamon_matrix ( prompt , seed , n_iter , batch_size )
else :
all_prompts = [ ]
prompt_matrix_parts = prompt . split ( " | " )
combination_count = 2 * * ( len ( prompt_matrix_parts ) - 1 )
for combination_num in range ( combination_count ) :
current = prompt_matrix_parts [ 0 ]
for n , text in enumerate ( prompt_matrix_parts [ 1 : ] ) :
if combination_num & ( 2 * * n ) > 0 :
current + = ( " " if text . strip ( ) . startswith ( " , " ) else " , " ) + text
all_prompts . append ( current )
n_iter = math . ceil ( len ( all_prompts ) / batch_size )
all_seeds = len ( all_prompts ) * [ seed ]
print ( f " Prompt matrix will create { len ( all_prompts ) } images using a total of { n_iter } batches. " )
else :
2022-09-14 16:40:56 +03:00
if not st . session_state [ ' defaults ' ] . general . no_verify_input :
2022-09-14 00:08:40 +03:00
try :
check_prompt_length ( prompt , comments )
except :
import traceback
print ( " Error verifying input: " , file = sys . stderr )
print ( traceback . format_exc ( ) , file = sys . stderr )
all_prompts = batch_size * n_iter * [ prompt ]
all_seeds = [ seed + x for x in range ( len ( all_prompts ) ) ]
2022-09-14 16:40:56 +03:00
precision_scope = autocast if st . session_state [ ' defaults ' ] . general . precision == " autocast " else nullcontext
2022-09-14 00:08:40 +03:00
output_images = [ ]
grid_captions = [ ]
stats = [ ]
2022-09-25 10:03:05 +03:00
with torch . no_grad ( ) , precision_scope ( " cuda " ) , ( server_state [ " model " ] . ema_scope ( ) if not st . session_state [ ' defaults ' ] . general . optimized else nullcontext ( ) ) :
2022-09-14 00:08:40 +03:00
init_data = func_init ( )
tic = time . time ( )
# if variant_amount > 0.0 create noise from base seed
base_x = None
if variant_amount > 0.0 :
target_seed_randomizer = seed_to_int ( ' ' ) # random seed
torch . manual_seed ( seed ) # this has to be the single starting seed (not per-iteration)
base_x = create_random_tensors ( [ opt_C , height / / opt_f , width / / opt_f ] , seeds = [ seed ] )
# we don't want all_seeds to be sequential from starting seed with variants,
# since that makes the same variants each time,
# so we add target_seed_randomizer as a random offset
for si in range ( len ( all_seeds ) ) :
all_seeds [ si ] + = target_seed_randomizer
for n in range ( n_iter ) :
print ( f " Iteration: { n + 1 } / { n_iter } " )
prompts = all_prompts [ n * batch_size : ( n + 1 ) * batch_size ]
captions = prompt_matrix_parts [ n * batch_size : ( n + 1 ) * batch_size ]
seeds = all_seeds [ n * batch_size : ( n + 1 ) * batch_size ]
print ( prompt )
2022-09-14 16:40:56 +03:00
if st . session_state [ ' defaults ' ] . general . optimized :
2022-09-25 10:03:05 +03:00
server_state [ " modelCS " ] . to ( st . session_state [ ' defaults ' ] . general . gpu )
2022-09-14 00:08:40 +03:00
2022-09-25 10:03:05 +03:00
uc = ( server_state [ " model " ] if not st . session_state [ ' defaults ' ] . general . optimized else server_state [ " modelCS " ] ) . get_learned_conditioning ( len ( prompts ) * [ negprompt ] )
2022-09-14 00:08:40 +03:00
if isinstance ( prompts , tuple ) :
prompts = list ( prompts )
# split the prompt if it has : for weighting
# TODO for speed it might help to have this occur when all_prompts filled??
weighted_subprompts = split_weighted_subprompts ( prompts [ 0 ] , normalize_prompt_weights )
# sub-prompt weighting used if more than 1
if len ( weighted_subprompts ) > 1 :
c = torch . zeros_like ( uc ) # i dont know if this is correct.. but it works
for i in range ( 0 , len ( weighted_subprompts ) ) :
# note if alpha negative, it functions same as torch.sub
2022-10-02 17:54:56 +03:00
c = torch . add ( c , ( server_state [ " model " ] if not st . session_state [ ' defaults ' ] . general . optimized else server_state [ " modelCS " ]
) . get_learned_conditioning ( weighted_subprompts [ i ] [ 0 ] ) , alpha = weighted_subprompts [ i ] [ 1 ] )
2022-09-14 00:08:40 +03:00
else : # just behave like usual
2022-09-25 10:03:05 +03:00
c = ( server_state [ " model " ] if not st . session_state [ ' defaults ' ] . general . optimized else server_state [ " modelCS " ] ) . get_learned_conditioning ( prompts )
2022-09-14 00:08:40 +03:00
shape = [ opt_C , height / / opt_f , width / / opt_f ]
2022-09-14 16:40:56 +03:00
if st . session_state [ ' defaults ' ] . general . optimized :
2022-09-14 00:08:40 +03:00
mem = torch . cuda . memory_allocated ( ) / 1e6
2022-09-25 10:03:05 +03:00
server_state [ " modelCS " ] . to ( " cpu " )
2022-09-14 00:08:40 +03:00
while ( torch . cuda . memory_allocated ( ) / 1e6 > = mem ) :
time . sleep ( 1 )
if noise_mode == 1 or noise_mode == 3 :
# TODO params for find_noise_to_image
2022-09-15 22:48:35 +03:00
x = torch . cat ( batch_size * [ find_noise_for_image (
2022-09-25 13:55:16 +03:00
server_state [ " model " ] , server_state [ " device " ] ,
2022-09-14 00:08:40 +03:00
init_img . convert ( ' RGB ' ) , ' ' , find_noise_steps , 0.0 , normalize = True ,
generation_callback = generation_callback ,
) ] , dim = 0 )
else :
# we manually generate all input noises because each one should have a specific seed
x = create_random_tensors ( shape , seeds = seeds )
if variant_amount > 0.0 : # we are making variants
# using variant_seed as sneaky toggle,
# when not None or '' use the variant_seed
# otherwise use seeds
if variant_seed != None and variant_seed != ' ' :
specified_variant_seed = seed_to_int ( variant_seed )
torch . manual_seed ( specified_variant_seed )
seeds = [ specified_variant_seed ]
# finally, slerp base_x noise to target_x noise for creating a variant
2022-09-14 16:40:56 +03:00
x = slerp ( st . session_state [ ' defaults ' ] . general . gpu , max ( 0.0 , min ( 1.0 , variant_amount ) ) , base_x , x )
2022-09-14 00:08:40 +03:00
samples_ddim = func_sample ( init_data = init_data , x = x , conditioning = c , unconditional_conditioning = uc , sampler_name = sampler_name )
2022-09-14 16:40:56 +03:00
if st . session_state [ ' defaults ' ] . general . optimized :
2022-09-25 10:03:05 +03:00
server_state [ " modelFS " ] . to ( st . session_state [ ' defaults ' ] . general . gpu )
2022-09-14 00:08:40 +03:00
2022-09-25 10:03:05 +03:00
x_samples_ddim = ( server_state [ " model " ] if not st . session_state [ ' defaults ' ] . general . optimized else server_state [ " modelFS " ] ) . decode_first_stage ( samples_ddim )
2022-09-14 00:08:40 +03:00
x_samples_ddim = torch . clamp ( ( x_samples_ddim + 1.0 ) / 2.0 , min = 0.0 , max = 1.0 )
2022-09-17 03:34:52 +03:00
run_images = [ ]
for i , x_sample in enumerate ( x_samples_ddim ) :
2022-09-14 00:08:40 +03:00
sanitized_prompt = slugify ( prompts [ i ] )
2022-09-17 03:34:52 +03:00
percent = i / len ( x_samples_ddim )
st . session_state [ " progress_bar " ] . progress ( percent if percent < 100 else 100 )
2022-09-14 00:08:40 +03:00
if sort_samples :
full_path = os . path . join ( os . getcwd ( ) , sample_path , sanitized_prompt )
2022-09-25 11:44:34 +03:00
sanitized_prompt = sanitized_prompt [ : 200 - len ( full_path ) ]
2022-09-14 00:08:40 +03:00
sample_path_i = os . path . join ( sample_path , sanitized_prompt )
#print(f"output folder length: {len(os.path.join(os.getcwd(), sample_path_i))}")
#print(os.path.join(os.getcwd(), sample_path_i))
os . makedirs ( sample_path_i , exist_ok = True )
base_count = get_next_sequence_number ( sample_path_i )
filename = f " { base_count : 05 } - { steps } _ { sampler_name } _ { seeds [ i ] } "
else :
full_path = os . path . join ( os . getcwd ( ) , sample_path )
sample_path_i = sample_path
base_count = get_next_sequence_number ( sample_path_i )
2022-09-25 11:44:34 +03:00
filename = f " { base_count : 05 } - { steps } _ { sampler_name } _ { seeds [ i ] } _ { sanitized_prompt } " [ : 200 - len ( full_path ) ] #same as before
2022-09-14 00:08:40 +03:00
x_sample = 255. * rearrange ( x_sample . cpu ( ) . numpy ( ) , ' c h w -> h w c ' )
x_sample = x_sample . astype ( np . uint8 )
image = Image . fromarray ( x_sample )
original_sample = x_sample
original_filename = filename
2022-09-17 04:25:08 +03:00
st . session_state [ " preview_image " ] . image ( image )
2022-10-03 06:26:01 +03:00
#
2022-10-02 23:10:17 +03:00
if use_GFPGAN and server_state [ " GFPGAN " ] is not None and not use_RealESRGAN and not use_LDSR :
2022-09-17 03:34:52 +03:00
st . session_state [ " progress_bar_text " ] . text ( " Running GFPGAN on image %d of %d ... " % ( i + 1 , len ( x_samples_ddim ) ) )
2022-10-03 06:26:01 +03:00
if server_state [ " GFPGAN " ] . name != GFPGAN_model :
load_models ( use_LDSR = use_LDSR , LDSR_model = LDSR_model_name , use_GFPGAN = use_GFPGAN , use_RealESRGAN = use_RealESRGAN , RealESRGAN_model = realesrgan_model_name )
2022-09-14 00:08:40 +03:00
torch_gc ( )
2022-09-25 10:03:05 +03:00
cropped_faces , restored_faces , restored_img = server_state [ " GFPGAN " ] . enhance ( x_sample [ : , : , : : - 1 ] , has_aligned = False , only_center_face = False , paste_back = True )
2022-10-02 06:18:09 +03:00
2022-09-14 00:08:40 +03:00
gfpgan_sample = restored_img [ : , : , : : - 1 ]
gfpgan_image = Image . fromarray ( gfpgan_sample )
2022-10-02 06:18:09 +03:00
#if st.session_state["GFPGAN_strenght"]:
#gfpgan_sample = Image.blend(image, gfpgan_image, st.session_state["GFPGAN_strenght"])
2022-09-14 00:08:40 +03:00
gfpgan_filename = original_filename + ' -gfpgan '
2022-09-17 03:34:52 +03:00
save_sample ( gfpgan_image , sample_path_i , gfpgan_filename , jpg_sample , prompts , seeds , width , height , steps , cfg_scale ,
2022-09-14 00:08:40 +03:00
normalize_prompt_weights , use_GFPGAN , write_info_files , prompt_matrix , init_img , uses_loopback ,
uses_random_seed_loopback , save_grid , sort_samples , sampler_name , ddim_eta ,
2022-09-25 10:03:05 +03:00
n_iter , batch_size , i , denoising_strength , resize_mode , False , server_state [ " loaded_model " ] )
2022-09-14 00:08:40 +03:00
output_images . append ( gfpgan_image ) #287
2022-09-17 03:34:52 +03:00
run_images . append ( gfpgan_image )
2022-09-14 00:08:40 +03:00
if simple_templating :
grid_captions . append ( captions [ i ] + " \n gfpgan " )
2022-10-02 06:18:09 +03:00
#
2022-09-25 10:03:05 +03:00
elif use_RealESRGAN and server_state [ " RealESRGAN " ] is not None and not use_GFPGAN :
2022-09-17 03:34:52 +03:00
st . session_state [ " progress_bar_text " ] . text ( " Running RealESRGAN on image %d of %d ... " % ( i + 1 , len ( x_samples_ddim ) ) )
2022-09-14 00:08:40 +03:00
#skip_save = True # #287 >_>
torch_gc ( )
2022-09-25 10:03:05 +03:00
if server_state [ " RealESRGAN " ] . model . name != realesrgan_model_name :
2022-09-14 00:08:40 +03:00
#try_loading_RealESRGAN(realesrgan_model_name)
load_models ( use_GFPGAN = use_GFPGAN , use_RealESRGAN = use_RealESRGAN , RealESRGAN_model = realesrgan_model_name )
2022-09-25 10:03:05 +03:00
output , img_mode = server_state [ " RealESRGAN " ] . enhance ( x_sample [ : , : , : : - 1 ] )
2022-09-14 00:08:40 +03:00
esrgan_filename = original_filename + ' -esrgan4x '
esrgan_sample = output [ : , : , : : - 1 ]
esrgan_image = Image . fromarray ( esrgan_sample )
2022-09-17 03:34:52 +03:00
#save_sample(image, sample_path_i, original_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
2022-09-14 00:08:40 +03:00
#normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
#save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode)
2022-09-17 03:34:52 +03:00
save_sample ( esrgan_image , sample_path_i , esrgan_filename , jpg_sample , prompts , seeds , width , height , steps , cfg_scale ,
2022-09-14 00:08:40 +03:00
normalize_prompt_weights , use_GFPGAN , write_info_files , prompt_matrix , init_img , uses_loopback , uses_random_seed_loopback ,
2022-09-25 10:03:05 +03:00
save_grid , sort_samples , sampler_name , ddim_eta , n_iter , batch_size , i , denoising_strength , resize_mode , False , server_state [ " loaded_model " ] )
2022-09-14 00:08:40 +03:00
output_images . append ( esrgan_image ) #287
2022-09-17 03:34:52 +03:00
run_images . append ( esrgan_image )
2022-09-14 00:08:40 +03:00
if simple_templating :
grid_captions . append ( captions [ i ] + " \n esrgan " )
2022-10-02 06:18:09 +03:00
#
2022-10-05 20:50:05 +03:00
elif use_LDSR and " LDSR " in server_state and not use_GFPGAN :
2022-10-02 06:18:09 +03:00
print ( " Running LDSR on image %d of %d ... " % ( i + 1 , len ( x_samples_ddim ) ) )
st . session_state [ " progress_bar_text " ] . text ( " Running LDSR on image %d of %d ... " % ( i + 1 , len ( x_samples_ddim ) ) )
#skip_save = True # #287 >_>
torch_gc ( )
if server_state [ " LDSR " ] . name != LDSR_model_name :
#try_loading_RealESRGAN(realesrgan_model_name)
load_models ( use_LDSR = use_LDSR , LDSR_model = LDSR_model_name , use_GFPGAN = use_GFPGAN , use_RealESRGAN = use_RealESRGAN , RealESRGAN_model = realesrgan_model_name )
2022-10-03 18:58:37 +03:00
result = server_state [ " LDSR " ] . superResolution ( image , ddimSteps = st . session_state [ " ldsr_sampling_steps " ] ,
2022-10-03 06:26:01 +03:00
preDownScale = st . session_state [ " preDownScale " ] , postDownScale = st . session_state [ " postDownScale " ] ,
downsample_method = st . session_state [ " downsample_method " ] )
2022-10-02 06:18:09 +03:00
ldsr_filename = original_filename + ' -ldsr4x '
2022-10-02 23:10:17 +03:00
#ldsr_sample = result[:,:,::-1]
#ldsr_image = Image.fromarray(ldsr_sample)
2022-10-02 06:18:09 +03:00
#save_sample(image, sample_path_i, original_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
#normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
#save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode)
2022-10-02 23:10:17 +03:00
save_sample ( result , sample_path_i , ldsr_filename , jpg_sample , prompts , seeds , width , height , steps , cfg_scale ,
2022-10-02 06:18:09 +03:00
normalize_prompt_weights , use_GFPGAN , write_info_files , prompt_matrix , init_img , uses_loopback , uses_random_seed_loopback ,
save_grid , sort_samples , sampler_name , ddim_eta , n_iter , batch_size , i , denoising_strength , resize_mode , False , server_state [ " loaded_model " ] )
2022-10-03 06:26:01 +03:00
output_images . append ( result ) #287
run_images . append ( result )
2022-10-02 06:18:09 +03:00
if simple_templating :
2022-10-02 23:10:17 +03:00
grid_captions . append ( captions [ i ] + " \n ldsr " )
#
2022-10-05 20:50:05 +03:00
elif use_LDSR and " LDSR " in server_state and use_GFPGAN and " GFPGAN " in server_state :
2022-10-02 23:10:17 +03:00
print ( " Running GFPGAN+LDSR on image %d of %d ... " % ( i + 1 , len ( x_samples_ddim ) ) )
st . session_state [ " progress_bar_text " ] . text ( " Running GFPGAN+LDSR on image %d of %d ... " % ( i + 1 , len ( x_samples_ddim ) ) )
2022-10-03 06:26:01 +03:00
if server_state [ " GFPGAN " ] . name != GFPGAN_model :
load_models ( use_LDSR = use_LDSR , LDSR_model = LDSR_model_name , use_GFPGAN = use_GFPGAN , use_RealESRGAN = use_RealESRGAN , RealESRGAN_model = realesrgan_model_name )
2022-10-02 23:10:17 +03:00
torch_gc ( )
2022-10-03 06:26:01 +03:00
cropped_faces , restored_faces , restored_img = server_state [ " GFPGAN " ] . enhance ( x_sample [ : , : , : : - 1 ] , has_aligned = False , only_center_face = False , paste_back = True )
gfpgan_sample = restored_img [ : , : , : : - 1 ]
gfpgan_image = Image . fromarray ( gfpgan_sample )
2022-10-02 23:10:17 +03:00
if server_state [ " LDSR " ] . name != LDSR_model_name :
#try_loading_RealESRGAN(realesrgan_model_name)
load_models ( use_LDSR = use_LDSR , LDSR_model = LDSR_model_name , use_GFPGAN = use_GFPGAN , use_RealESRGAN = use_RealESRGAN , RealESRGAN_model = realesrgan_model_name )
2022-10-03 06:26:01 +03:00
#LDSR.superResolution(gfpgan_image, ddimSteps=100, preDownScale='None', postDownScale='None', downsample_method="Lanczos")
result = server_state [ " LDSR " ] . superResolution ( gfpgan_image , ddimSteps = st . session_state [ " ldsr_sampling_steps " ] ,
preDownScale = st . session_state [ " preDownScale " ] , postDownScale = st . session_state [ " postDownScale " ] ,
downsample_method = st . session_state [ " downsample_method " ] )
2022-10-02 23:10:17 +03:00
ldsr_filename = original_filename + ' -gfpgan-ldsr2x '
#ldsr_sample = result[:,:,::-1]
#ldsr_image = Image.fromarray(result)
#save_sample(image, sample_path_i, original_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
#normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
#save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode)
save_sample ( result , sample_path_i , ldsr_filename , jpg_sample , prompts , seeds , width , height , steps , cfg_scale ,
normalize_prompt_weights , use_GFPGAN , write_info_files , prompt_matrix , init_img , uses_loopback , uses_random_seed_loopback ,
save_grid , sort_samples , sampler_name , ddim_eta , n_iter , batch_size , i , denoising_strength , resize_mode , False , server_state [ " loaded_model " ] )
output_images . append ( result ) #287
run_images . append ( result )
if simple_templating :
grid_captions . append ( captions [ i ] + " \n gfpgan-ldsr " )
2022-09-14 00:08:40 +03:00
2022-09-25 10:03:05 +03:00
elif use_RealESRGAN and server_state [ " RealESRGAN " ] is not None and use_GFPGAN and server_state [ " GFPGAN " ] is not None :
2022-09-17 03:34:52 +03:00
st . session_state [ " progress_bar_text " ] . text ( " Running GFPGAN+RealESRGAN on image %d of %d ... " % ( i + 1 , len ( x_samples_ddim ) ) )
2022-09-14 00:08:40 +03:00
#skip_save = True # #287 >_>
torch_gc ( )
2022-09-25 10:03:05 +03:00
cropped_faces , restored_faces , restored_img = server_state [ " GFPGAN " ] . enhance ( x_sample [ : , : , : : - 1 ] , has_aligned = False , only_center_face = False , paste_back = True )
2022-09-14 00:08:40 +03:00
gfpgan_sample = restored_img [ : , : , : : - 1 ]
2022-09-25 10:03:05 +03:00
if server_state [ " RealESRGAN " ] . model . name != realesrgan_model_name :
2022-09-14 00:08:40 +03:00
#try_loading_RealESRGAN(realesrgan_model_name)
load_models ( use_GFPGAN = use_GFPGAN , use_RealESRGAN = use_RealESRGAN , RealESRGAN_model = realesrgan_model_name )
2022-09-25 10:03:05 +03:00
output , img_mode = server_state [ " RealESRGAN " ] . enhance ( gfpgan_sample [ : , : , : : - 1 ] )
2022-09-14 00:08:40 +03:00
gfpgan_esrgan_filename = original_filename + ' -gfpgan-esrgan4x '
gfpgan_esrgan_sample = output [ : , : , : : - 1 ]
2022-09-17 03:34:52 +03:00
gfpgan_esrgan_image = Image . fromarray ( gfpgan_esrgan_sample )
2022-09-14 00:08:40 +03:00
2022-09-17 03:34:52 +03:00
save_sample ( gfpgan_esrgan_image , sample_path_i , gfpgan_esrgan_filename , jpg_sample , prompts , seeds , width , height , steps , cfg_scale ,
2022-09-14 00:08:40 +03:00
normalize_prompt_weights , False , write_info_files , prompt_matrix , init_img , uses_loopback , uses_random_seed_loopback ,
2022-09-25 10:03:05 +03:00
save_grid , sort_samples , sampler_name , ddim_eta , n_iter , batch_size , i , denoising_strength , resize_mode , False , server_state [ " loaded_model " ] )
2022-09-14 00:08:40 +03:00
output_images . append ( gfpgan_esrgan_image ) #287
2022-09-17 03:34:52 +03:00
run_images . append ( gfpgan_esrgan_image )
2022-09-14 00:08:40 +03:00
if simple_templating :
grid_captions . append ( captions [ i ] + " \n gfpgan_esrgan " )
2022-10-02 06:18:09 +03:00
#
2022-10-02 23:10:17 +03:00
2022-09-17 03:34:52 +03:00
else :
output_images . append ( image )
run_images . append ( image )
2022-09-14 00:08:40 +03:00
if mask_restore and init_mask :
#init_mask = init_mask if keep_mask else ImageOps.invert(init_mask)
init_mask = init_mask . filter ( ImageFilter . GaussianBlur ( mask_blur_strength ) )
init_mask = init_mask . convert ( ' L ' )
init_img = init_img . convert ( ' RGB ' )
image = image . convert ( ' RGB ' )
2022-09-25 10:03:05 +03:00
if use_RealESRGAN and server_state [ " RealESRGAN " ] is not None :
if server_state [ " RealESRGAN " ] . model . name != realesrgan_model_name :
2022-09-14 00:08:40 +03:00
#try_loading_RealESRGAN(realesrgan_model_name)
load_models ( use_GFPGAN = use_GFPGAN , use_RealESRGAN = use_RealESRGAN , RealESRGAN_model = realesrgan_model_name )
2022-09-25 10:03:05 +03:00
output , img_mode = server_state [ " RealESRGAN " ] . enhance ( np . array ( init_img , dtype = np . uint8 ) )
2022-09-14 00:08:40 +03:00
init_img = Image . fromarray ( output )
init_img = init_img . convert ( ' RGB ' )
2022-09-25 10:03:05 +03:00
output , img_mode = server_state [ " RealESRGAN " ] . enhance ( np . array ( init_mask , dtype = np . uint8 ) )
2022-09-14 00:08:40 +03:00
init_mask = Image . fromarray ( output )
init_mask = init_mask . convert ( ' L ' )
image = Image . composite ( init_img , image , init_mask )
if save_individual_images :
save_sample ( image , sample_path_i , filename , jpg_sample , prompts , seeds , width , height , steps , cfg_scale ,
normalize_prompt_weights , use_GFPGAN , write_info_files , prompt_matrix , init_img , uses_loopback , uses_random_seed_loopback ,
2022-09-25 10:03:05 +03:00
save_grid , sort_samples , sampler_name , ddim_eta , n_iter , batch_size , i , denoising_strength , resize_mode , save_individual_images , server_state [ " loaded_model " ] )
2022-09-14 00:08:40 +03:00
#if add_original_image or not simple_templating:
#output_images.append(image)
#if simple_templating:
#grid_captions.append( captions[i] )
2022-09-14 16:40:56 +03:00
if st . session_state [ ' defaults ' ] . general . optimized :
2022-09-14 00:08:40 +03:00
mem = torch . cuda . memory_allocated ( ) / 1e6
2022-09-25 10:03:05 +03:00
server_state [ " modelFS " ] . to ( " cpu " )
2022-09-14 00:08:40 +03:00
while ( torch . cuda . memory_allocated ( ) / 1e6 > = mem ) :
time . sleep ( 1 )
2022-09-17 03:34:52 +03:00
if len ( run_images ) > 1 :
preview_image = image_grid ( run_images , n_iter )
else :
preview_image = run_images [ 0 ]
# Constrain the final preview image to 1440x900 so we're not sending huge amounts of data
# to the browser
preview_image = constrain_image ( preview_image , 1440 , 900 )
st . session_state [ " progress_bar_text " ] . text ( " Finished! " )
st . session_state [ " preview_image " ] . image ( preview_image )
2022-09-14 00:08:40 +03:00
if prompt_matrix or save_grid :
if prompt_matrix :
if simple_templating :
grid = image_grid ( output_images , n_iter , force_n_rows = frows , captions = grid_captions )
else :
grid = image_grid ( output_images , n_iter , force_n_rows = 1 << ( ( len ( prompt_matrix_parts ) - 1 ) / / 2 ) )
try :
grid = draw_prompt_matrix ( grid , width , height , prompt_matrix_parts )
except :
import traceback
print ( " Error creating prompt_matrix text: " , file = sys . stderr )
print ( traceback . format_exc ( ) , file = sys . stderr )
else :
grid = image_grid ( output_images , batch_size )
if grid and ( batch_size > 1 or n_iter > 1 ) :
output_images . insert ( 0 , grid )
grid_count = get_next_sequence_number ( outpath , ' grid- ' )
2022-09-25 11:44:34 +03:00
grid_file = f " grid- { grid_count : 05 } - { seed } _ { slugify ( prompts [ i ] . replace ( ' ' , ' _ ' ) [ : 200 - len ( full_path ) ] ) } . { grid_ext } "
2022-09-14 00:08:40 +03:00
grid . save ( os . path . join ( outpath , grid_file ) , grid_format , quality = grid_quality , lossless = grid_lossless , optimize = True )
toc = time . time ( )
mem_max_used , mem_total = mem_mon . read_and_stop ( )
time_diff = time . time ( ) - start_time
info = f """
{ prompt }
2022-09-25 10:03:05 +03:00
Steps : { steps } , Sampler : { sampler_name } , CFG scale : { cfg_scale } , Seed : { seed } { ' , Denoising strength: ' + str ( denoising_strength ) if init_img is not None else ' ' } { ' , GFPGAN ' if use_GFPGAN and server_state [ " GFPGAN " ] is not None else ' ' } { ' , ' + realesrgan_model_name if use_RealESRGAN and server_state [ " RealESRGAN " ] is not None else ' ' } { ' , Prompt Matrix Mode. ' if prompt_matrix else ' ' } """ .strip()
2022-09-14 00:08:40 +03:00
stats = f '''
Took { round ( time_diff , 2 ) } s total ( { round ( time_diff / ( len ( all_prompts ) ) , 2 ) } s per image )
Peak memory usage : { - ( mem_max_used / / - 1_048_576 ) } MiB / { - ( mem_total / / - 1_048_576 ) } MiB / { round ( mem_max_used / mem_total * 100 , 3 ) } % '''
for comment in comments :
info + = " \n \n " + comment
#mem_mon.stop()
#del mem_mon
torch_gc ( )
return output_images , seed , info , stats
def resize_image ( resize_mode , im , width , height ) :
LANCZOS = ( Image . Resampling . LANCZOS if hasattr ( Image , ' Resampling ' ) else Image . LANCZOS )
if resize_mode == 0 :
res = im . resize ( ( width , height ) , resample = LANCZOS )
elif resize_mode == 1 :
ratio = width / height
src_ratio = im . width / im . height
src_w = width if ratio > src_ratio else im . width * height / / im . height
src_h = height if ratio < = src_ratio else im . height * width / / im . width
resized = im . resize ( ( src_w , src_h ) , resample = LANCZOS )
res = Image . new ( " RGBA " , ( width , height ) )
res . paste ( resized , box = ( width / / 2 - src_w / / 2 , height / / 2 - src_h / / 2 ) )
else :
ratio = width / height
src_ratio = im . width / im . height
src_w = width if ratio < src_ratio else im . width * height / / im . height
src_h = height if ratio > = src_ratio else im . height * width / / im . width
resized = im . resize ( ( src_w , src_h ) , resample = LANCZOS )
res = Image . new ( " RGBA " , ( width , height ) )
res . paste ( resized , box = ( width / / 2 - src_w / / 2 , height / / 2 - src_h / / 2 ) )
if ratio < src_ratio :
fill_height = height / / 2 - src_h / / 2
res . paste ( resized . resize ( ( width , fill_height ) , box = ( 0 , 0 , width , 0 ) ) , box = ( 0 , 0 ) )
res . paste ( resized . resize ( ( width , fill_height ) , box = ( 0 , resized . height , width , resized . height ) ) , box = ( 0 , fill_height + src_h ) )
elif ratio > src_ratio :
fill_width = width / / 2 - src_w / / 2
res . paste ( resized . resize ( ( fill_width , height ) , box = ( 0 , 0 , 0 , height ) ) , box = ( 0 , 0 ) )
res . paste ( resized . resize ( ( fill_width , height ) , box = ( resized . width , 0 , resized . width , height ) ) , box = ( fill_width + src_w , 0 ) )
return res
2022-09-17 03:34:52 +03:00
def constrain_image ( img , max_width , max_height ) :
ratio = max ( img . width / max_width , img . height / max_height )
if ratio < = 1 :
return img
resampler = ( Image . Resampling . LANCZOS if hasattr ( Image , ' Resampling ' ) else Image . LANCZOS )
resized = img . resize ( ( int ( img . width / ratio ) , int ( img . height / ratio ) ) , resample = resampler )
return resized
2022-09-22 00:58:49 +03:00
def convert_pt_to_bin_and_load ( input_file , text_encoder , tokenizer , placeholder_token ) :
x = torch . load ( input_file , map_location = torch . device ( ' cpu ' ) )
params_dict = {
placeholder_token : torch . tensor ( list ( x [ ' string_to_param ' ] . items ( ) ) [ 0 ] [ 1 ] )
}
torch . save ( params_dict , " learned_embeds.bin " )
load_learned_embed_in_clip ( " learned_embeds.bin " , text_encoder , tokenizer , placeholder_token )
2022-09-30 12:04:52 +03:00
print ( " loaded " , placeholder_token )