slider_steps and slider_bounds in defaults config

slider_steps and slider_bounds in defaults config
This commit is contained in:
hlky 2022-09-18 12:17:57 +01:00
parent 54e7f8f235
commit 2146f1dd68
No known key found for this signature in database
GPG Key ID: 55A99F1E80D907D5
4 changed files with 93 additions and 54 deletions

View File

@ -62,6 +62,15 @@ txt2img:
variant_amount: 0.0
variant_seed: ""
write_info_files: True
slider_steps: {
sampling: 1
}
slider_bounds: {
sampling: {
lower: 1,
upper: 150
}
}
txt2vid:
default_model: "CompVis/stable-diffusion-v1-4"
@ -97,58 +106,76 @@ txt2vid:
beta_end: 0.012
beta_scheduler_type: "linear"
max_frames: 1000
slider_steps: {
sampling: 1
}
slider_bounds: {
sampling: {
lower: 1,
upper: 150
}
}
img2img:
prompt:
sampling_steps: 30
# Adding an int to toggles enables the corresponding feature.
# 0: Create prompt matrix (separate multiple prompts using |, and get all combinations of them)
# 1: Normalize Prompt Weights (ensure sum of weights add up to 1.0)
# 2: Loopback (use images from previous batch when creating next batch)
# 3: Random loopback seed
# 4: Save individual images
# 5: Save grid
# 6: Sort samples by prompt
# 7: Write sample info files
# 8: jpg samples
# 9: Fix faces using GFPGAN
# 10: Upscale images using Real-ESRGAN
sampler_name: "k_euler"
denoising_strength: 0.75
# 0: Keep masked area
# 1: Regenerate only masked area
mask_mode: 0
mask_restore: False
# 0: Just resize
# 1: Crop and resize
# 2: Resize and fill
resize_mode: 0
# Leave blank for random seed:
seed: ""
ddim_eta: 0.0
cfg_scale: 7.5
batch_count: 1
batch_size: 1
height: 512
width: 512
# Textual inversion embeddings file path:
fp: ""
loopback: True
random_seed_loopback: True
separate_prompts: False
update_preview: True
update_preview_frequency: 5
normalize_prompt_weights: True
save_individual_images: True
save_grid: True
group_by_prompt: True
save_as_jpg: False
use_GFPGAN: False
use_RealESRGAN: False
RealESRGAN_model: "RealESRGAN_x4plus"
variant_amount: 0.0
variant_seed: ""
write_info_files: True
prompt:
sampling_steps: 30
# Adding an int to toggles enables the corresponding feature.
# 0: Create prompt matrix (separate multiple prompts using |, and get all combinations of them)
# 1: Normalize Prompt Weights (ensure sum of weights add up to 1.0)
# 2: Loopback (use images from previous batch when creating next batch)
# 3: Random loopback seed
# 4: Save individual images
# 5: Save grid
# 6: Sort samples by prompt
# 7: Write sample info files
# 8: jpg samples
# 9: Fix faces using GFPGAN
# 10: Upscale images using Real-ESRGAN
sampler_name: "k_euler"
denoising_strength: 0.75
# 0: Keep masked area
# 1: Regenerate only masked area
mask_mode: 0
mask_restore: False
# 0: Just resize
# 1: Crop and resize
# 2: Resize and fill
resize_mode: 0
# Leave blank for random seed:
seed: ""
ddim_eta: 0.0
cfg_scale: 7.5
batch_count: 1
batch_size: 1
height: 512
width: 512
# Textual inversion embeddings file path:
fp: ""
loopback: True
random_seed_loopback: True
separate_prompts: False
update_preview: True
update_preview_frequency: 5
normalize_prompt_weights: True
save_individual_images: True
save_grid: True
group_by_prompt: True
save_as_jpg: False
use_GFPGAN: False
use_RealESRGAN: False
RealESRGAN_model: "RealESRGAN_x4plus"
variant_amount: 0.0
variant_seed: ""
write_info_files: True
slider_steps: {
sampling: 1
}
slider_bounds: {
sampling: {
lower: 1,
upper: 150
}
}
gfpgan:
strength: 100

View File

@ -383,7 +383,11 @@ def layout():
st.session_state["custom_model"] = "Stable Diffusion v1.4"
st.session_state["sampling_steps"] = st.slider("Sampling Steps", value=st.session_state['defaults'].img2img.sampling_steps, min_value=1, max_value=500)
st.session_state["sampling_steps"] = st.slider("Sampling Steps",
value=st.session_state['defaults'].img2img.sampling_steps,
min_value=st.session_state['defaults'].img2img.slider_bounds.sampling.lower,
max_value=st.session_state['defaults'].img2img.slider_bounds.sampling.upper,
step=st.session_state['defaults'].img2img.slider_steps.sampling)
sampler_name_list = ["k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "k_heun", "PLMS", "DDIM"]
st.session_state["sampler_name"] = st.selectbox("Sampling method",sampler_name_list,

View File

@ -217,7 +217,11 @@ def layout():
the file for the model has on said folder, it is recommended to give the .ckpt file a name that \
will make it easier for you to distinguish it from other models. Default: Stable Diffusion v1.4")
st.session_state.sampling_steps = st.slider("Sampling Steps", value=st.session_state['defaults'].txt2img.sampling_steps, min_value=10, max_value=500, step=10)
st.session_state.sampling_steps = st.slider("Sampling Steps",
value=st.session_state['defaults'].txt2img.sampling_steps,
min_value=st.session_state['defaults'].txt2img.slider_bounds.sampling.lower,
max_value=st.session_state['defaults'].txt2img.slider_bounds.sampling.upper,
step=st.session_state['defaults'].txt2img.slider_steps.sampling)
sampler_name_list = ["k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "k_heun", "PLMS", "DDIM"]
sampler_name = st.selectbox("Sampling method", sampler_name_list,

View File

@ -650,8 +650,12 @@ def layout():
#custom_model = "CompVis/stable-diffusion-v1-4"
#st.session_state["weights_path"] = f"CompVis/{slugify(custom_model.lower())}"
st.session_state.sampling_steps = st.slider("Sampling Steps", value=st.session_state['defaults'].txt2vid.sampling_steps, min_value=10, step=10, max_value=500,
help="Number of steps between each pair of sampled points")
st.session_state.sampling_steps = st.slider("Sampling Steps",
value=st.session_state['defaults'].txt2vid.sampling_steps,
min_value=st.session_state['defaults'].txt2vid.slider_bounds.sampling.lower,
max_value=st.session_state['defaults'].txt2vid.slider_bounds.sampling.upper,
step=st.session_state['defaults'].txt2vid.slider_steps.sampling,
help="Number of steps between each pair of sampled points")
st.session_state.num_inference_steps = st.slider("Inference Steps:", value=st.session_state['defaults'].txt2vid.num_inference_steps, min_value=10,step=10, max_value=500,
help="Higher values (e.g. 100, 200 etc) can create better images.")