mirror of
https://github.com/Sygil-Dev/sygil-webui.git
synced 2024-12-14 14:05:36 +03:00
Reverted txt2vid to use the StableDiffusionPipeline instead of StableDiffusionWalkPipeline when loading the model.
This commit is contained in:
parent
25acf77260
commit
2ea2606e83
@ -377,10 +377,9 @@ class StableDiffusionWalkPipeline(DiffusionPipeline):
|
||||
|
||||
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
||||
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
||||
print(
|
||||
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
||||
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
||||
)
|
||||
print("The following part of your input was truncated because CLIP can only handle sequences up to"
|
||||
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
||||
)
|
||||
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
||||
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
||||
else:
|
||||
@ -613,7 +612,7 @@ class StableDiffusionWalkPipeline(DiffusionPipeline):
|
||||
|
||||
def walk(
|
||||
self,
|
||||
prompts: Optional[List[str]] = None,
|
||||
prompt: Optional[List[str]] = None,
|
||||
seeds: Optional[List[int]] = None,
|
||||
num_interpolation_steps: Optional[Union[int, List[int]]] = 5, # int or list of int
|
||||
output_dir: Optional[str] = "./dreams",
|
||||
@ -1108,7 +1107,7 @@ def load_diffusers_model(weights_path,torch_device):
|
||||
model_path = os.path.join("models", "diffusers", "stable-diffusion-v1-5")
|
||||
|
||||
if not os.path.exists(model_path + "/model_index.json"):
|
||||
server_state["pipe"] = StableDiffusionWalkPipeline.from_pretrained(
|
||||
server_state["pipe"] = StableDiffusionPipeline.from_pretrained(
|
||||
weights_path,
|
||||
use_local_file=True,
|
||||
use_auth_token=st.session_state["defaults"].general.huggingface_token,
|
||||
@ -1116,11 +1115,12 @@ def load_diffusers_model(weights_path,torch_device):
|
||||
revision="fp16" if not st.session_state['defaults'].general.no_half else None,
|
||||
safety_checker=None, # Very important for videos...lots of false positives while interpolating
|
||||
#custom_pipeline="interpolate_stable_diffusion",
|
||||
|
||||
)
|
||||
|
||||
StableDiffusionWalkPipeline.save_pretrained(server_state["pipe"], model_path)
|
||||
StableDiffusionPipeline.save_pretrained(server_state["pipe"], model_path)
|
||||
else:
|
||||
server_state["pipe"] = StableDiffusionWalkPipeline.from_pretrained(
|
||||
server_state["pipe"] = StableDiffusionPipeline.from_pretrained(
|
||||
model_path,
|
||||
use_local_file=True,
|
||||
torch_dtype=torch.float16 if st.session_state['defaults'].general.use_float16 else None,
|
||||
@ -1436,29 +1436,30 @@ def txt2vid(
|
||||
# works correctly generating all frames but do not show the preview image
|
||||
# we also do not have control over the generation and cant stop it until the end of it.
|
||||
#with torch.autocast("cuda"):
|
||||
#print (prompts)
|
||||
#video_path = server_state["pipe"].walk(
|
||||
#prompts=prompts,
|
||||
#seeds=seeds,
|
||||
#num_interpolation_steps=num_steps,
|
||||
#height=height, # use multiples of 64 if > 512. Multiples of 8 if < 512.
|
||||
#width=width, # use multiples of 64 if > 512. Multiples of 8 if < 512.
|
||||
#batch_size=4,
|
||||
#fps=30,
|
||||
#image_file_ext = ".png",
|
||||
#eta = 0.0,
|
||||
#output_dir=full_path, # Where images/videos will be saved
|
||||
##name='test', # Subdirectory of output_dir where images/videos will be saved
|
||||
#guidance_scale=cfg_scale, # Higher adheres to prompt more, lower lets model take the wheel
|
||||
#num_inference_steps=num_inference_steps, # Number of diffusion steps per image generated. 50 is good default
|
||||
#upsample = False,
|
||||
##do_loop=do_loop, # Change to True if you want last prompt to loop back to first prompt
|
||||
#resume = False,
|
||||
#audio_filepath = None,
|
||||
#audio_start_sec = None,
|
||||
#margin = 1.0,
|
||||
#smooth = 0.0,
|
||||
#callback=txt2vid_generation_callback, # our callback function will be called with the arguments callback(step, timestep, latents)
|
||||
#callback_steps=1 # our callback function will be called once this many steps are processed in a single frame
|
||||
#prompt=prompts,
|
||||
#seeds=seeds,
|
||||
#num_interpolation_steps=num_steps,
|
||||
#height=height, # use multiples of 64 if > 512. Multiples of 8 if < 512.
|
||||
#width=width, # use multiples of 64 if > 512. Multiples of 8 if < 512.
|
||||
#batch_size=4,
|
||||
#fps=30,
|
||||
#image_file_ext = ".png",
|
||||
#eta = 0.0,
|
||||
#output_dir=full_path, # Where images/videos will be saved
|
||||
##name='test', # Subdirectory of output_dir where images/videos will be saved
|
||||
#guidance_scale=cfg_scale, # Higher adheres to prompt more, lower lets model take the wheel
|
||||
#num_inference_steps=num_inference_steps, # Number of diffusion steps per image generated. 50 is good default
|
||||
#upsample = False,
|
||||
##do_loop=do_loop, # Change to True if you want last prompt to loop back to first prompt
|
||||
#resume = False,
|
||||
#audio_filepath = None,
|
||||
#audio_start_sec = None,
|
||||
#margin = 1.0,
|
||||
#smooth = 0.0,
|
||||
#callback=txt2vid_generation_callback, # our callback function will be called with the arguments callback(step, timestep, latents)
|
||||
#callback_steps=1 # our callback function will be called once this many steps are processed in a single frame
|
||||
#)
|
||||
|
||||
# old code
|
||||
|
Loading…
Reference in New Issue
Block a user