mirror of
https://github.com/Sygil-Dev/sygil-webui.git
synced 2024-12-14 22:13:41 +03:00
Added option to the Settings page to enable and disable the suggestion box.
This commit is contained in:
parent
3e87802c9f
commit
3868b79b07
@ -57,6 +57,7 @@ general:
|
|||||||
n_rows: -1
|
n_rows: -1
|
||||||
no_verify_input: False
|
no_verify_input: False
|
||||||
show_percent_in_tab_title: True
|
show_percent_in_tab_title: True
|
||||||
|
enable_suggestions: True
|
||||||
no_half: False
|
no_half: False
|
||||||
use_float16: False
|
use_float16: False
|
||||||
precision: "autocast"
|
precision: "autocast"
|
||||||
|
@ -213,6 +213,9 @@ def layout():
|
|||||||
help="Add the progress percent value to the page title on the tab on your browser. "
|
help="Add the progress percent value to the page title on the tab on your browser. "
|
||||||
"This is useful in case you need to know how the generation is going while doign something else"
|
"This is useful in case you need to know how the generation is going while doign something else"
|
||||||
"in another tab on your browser. Default: True")
|
"in another tab on your browser. Default: True")
|
||||||
|
|
||||||
|
st.session_state["defaults"].general.enable_suggestions = st.checkbox("Enable Suggestions Box", value=st.session_state['defaults'].general.enable_suggestions,
|
||||||
|
help="Adds a suggestion box under the prompt when clicked. Default: True")
|
||||||
|
|
||||||
st.session_state["defaults"].daisi_app.running_on_daisi_io = st.checkbox("Running on Daisi.io?", value=st.session_state['defaults'].daisi_app.running_on_daisi_io,
|
st.session_state["defaults"].daisi_app.running_on_daisi_io = st.checkbox("Running on Daisi.io?", value=st.session_state['defaults'].daisi_app.running_on_daisi_io,
|
||||||
help="Specify if we are running on app.Daisi.io . Default: False")
|
help="Specify if we are running on app.Daisi.io . Default: False")
|
||||||
|
@ -379,7 +379,10 @@ def layout():
|
|||||||
#prompt = st.text_area("Input Text","")
|
#prompt = st.text_area("Input Text","")
|
||||||
placeholder = "A corgi wearing a top hat as an oil painting."
|
placeholder = "A corgi wearing a top hat as an oil painting."
|
||||||
prompt = st.text_area("Input Text","", placeholder=placeholder, height=54)
|
prompt = st.text_area("Input Text","", placeholder=placeholder, height=54)
|
||||||
sygil_suggestions.suggestion_area(placeholder)
|
|
||||||
|
if "defaults" in st.session_state:
|
||||||
|
if st.session_state["defaults"].general.enable_suggestions:
|
||||||
|
sygil_suggestions.suggestion_area(placeholder)
|
||||||
|
|
||||||
if "defaults" in st.session_state:
|
if "defaults" in st.session_state:
|
||||||
if st.session_state['defaults'].admin.global_negative_prompt:
|
if st.session_state['defaults'].admin.global_negative_prompt:
|
||||||
|
@ -109,6 +109,9 @@ try:
|
|||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
# disable diffusers telemetry
|
||||||
|
os.environ["DISABLE_TELEMETRY"] = "YES"
|
||||||
|
|
||||||
# remove some annoying deprecation warnings that show every now and then.
|
# remove some annoying deprecation warnings that show every now and then.
|
||||||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
||||||
warnings.filterwarnings("ignore", category=UserWarning)
|
warnings.filterwarnings("ignore", category=UserWarning)
|
||||||
|
@ -427,7 +427,10 @@ def layout():
|
|||||||
#prompt = st.text_area("Input Text","")
|
#prompt = st.text_area("Input Text","")
|
||||||
placeholder = "A corgi wearing a top hat as an oil painting."
|
placeholder = "A corgi wearing a top hat as an oil painting."
|
||||||
prompt = st.text_area("Input Text","", placeholder=placeholder, height=54)
|
prompt = st.text_area("Input Text","", placeholder=placeholder, height=54)
|
||||||
sygil_suggestions.suggestion_area(placeholder)
|
|
||||||
|
if "defaults" in st.session_state:
|
||||||
|
if st.session_state["defaults"].general.enable_suggestions:
|
||||||
|
sygil_suggestions.suggestion_area(placeholder)
|
||||||
|
|
||||||
if "defaults" in st.session_state:
|
if "defaults" in st.session_state:
|
||||||
if st.session_state['defaults'].admin.global_negative_prompt:
|
if st.session_state['defaults'].admin.global_negative_prompt:
|
||||||
|
@ -942,12 +942,12 @@ class StableDiffusionWalkPipeline(DiffusionPipeline):
|
|||||||
def diffuse(
|
def diffuse(
|
||||||
pipe,
|
pipe,
|
||||||
cond_embeddings, # text conditioning, should be (1, 77, 768)
|
cond_embeddings, # text conditioning, should be (1, 77, 768)
|
||||||
cond_latents, # image conditioning, should be (1, 4, 64, 64)
|
cond_latents, # image conditioning, should be (1, 4, 64, 64)
|
||||||
num_inference_steps,
|
num_inference_steps,
|
||||||
cfg_scale,
|
cfg_scale,
|
||||||
eta,
|
eta,
|
||||||
fps=30
|
fps=30
|
||||||
):
|
):
|
||||||
|
|
||||||
torch_device = cond_latents.get_device()
|
torch_device = cond_latents.get_device()
|
||||||
|
|
||||||
@ -1133,7 +1133,7 @@ def load_diffusers_model(weights_path,torch_device):
|
|||||||
if not os.path.exists(model_path + "/model_index.json"):
|
if not os.path.exists(model_path + "/model_index.json"):
|
||||||
server_state["pipe"] = StableDiffusionPipeline.from_pretrained(
|
server_state["pipe"] = StableDiffusionPipeline.from_pretrained(
|
||||||
weights_path,
|
weights_path,
|
||||||
use_local_file=True,
|
#use_local_file=True,
|
||||||
use_auth_token=st.session_state["defaults"].general.huggingface_token,
|
use_auth_token=st.session_state["defaults"].general.huggingface_token,
|
||||||
torch_dtype=torch.float16 if st.session_state['defaults'].general.use_float16 else None,
|
torch_dtype=torch.float16 if st.session_state['defaults'].general.use_float16 else None,
|
||||||
revision="fp16" if not st.session_state['defaults'].general.no_half else None,
|
revision="fp16" if not st.session_state['defaults'].general.no_half else None,
|
||||||
@ -1146,7 +1146,7 @@ def load_diffusers_model(weights_path,torch_device):
|
|||||||
else:
|
else:
|
||||||
server_state["pipe"] = StableDiffusionPipeline.from_pretrained(
|
server_state["pipe"] = StableDiffusionPipeline.from_pretrained(
|
||||||
model_path,
|
model_path,
|
||||||
use_local_file=True,
|
#use_local_file=True,
|
||||||
torch_dtype=torch.float16 if st.session_state['defaults'].general.use_float16 else None,
|
torch_dtype=torch.float16 if st.session_state['defaults'].general.use_float16 else None,
|
||||||
revision="fp16" if not st.session_state['defaults'].general.no_half else None,
|
revision="fp16" if not st.session_state['defaults'].general.no_half else None,
|
||||||
safety_checker=None, # Very important for videos...lots of false positives while interpolating
|
safety_checker=None, # Very important for videos...lots of false positives while interpolating
|
||||||
@ -1181,7 +1181,8 @@ def load_diffusers_model(weights_path,torch_device):
|
|||||||
server_state['float16'] = st.session_state['defaults'].general.use_float16
|
server_state['float16'] = st.session_state['defaults'].general.use_float16
|
||||||
server_state['no_half'] = st.session_state['defaults'].general.no_half
|
server_state['no_half'] = st.session_state['defaults'].general.no_half
|
||||||
server_state['optimized'] = st.session_state['defaults'].general.optimized
|
server_state['optimized'] = st.session_state['defaults'].general.optimized
|
||||||
|
|
||||||
|
#with no_rerun:
|
||||||
load_diffusers_model(weights_path, torch_device)
|
load_diffusers_model(weights_path, torch_device)
|
||||||
else:
|
else:
|
||||||
logger.info("Tx2Vid Model already Loaded")
|
logger.info("Tx2Vid Model already Loaded")
|
||||||
@ -1321,28 +1322,28 @@ def txt2vid(
|
|||||||
with open(os.path.join(full_path , f'{slugify(str(seeds))}_config.json' if len(prompts) > 1 else "prompts_config.json"), "w") as outfile:
|
with open(os.path.join(full_path , f'{slugify(str(seeds))}_config.json' if len(prompts) > 1 else "prompts_config.json"), "w") as outfile:
|
||||||
outfile.write(json.dumps(
|
outfile.write(json.dumps(
|
||||||
dict(
|
dict(
|
||||||
prompts = prompts,
|
prompts = prompts,
|
||||||
gpu = gpu,
|
gpu = gpu,
|
||||||
num_steps = num_steps,
|
num_steps = num_steps,
|
||||||
max_duration_in_seconds = max_duration_in_seconds,
|
max_duration_in_seconds = max_duration_in_seconds,
|
||||||
num_inference_steps = num_inference_steps,
|
num_inference_steps = num_inference_steps,
|
||||||
cfg_scale = cfg_scale,
|
cfg_scale = cfg_scale,
|
||||||
do_loop = do_loop,
|
do_loop = do_loop,
|
||||||
use_lerp_for_text = use_lerp_for_text,
|
use_lerp_for_text = use_lerp_for_text,
|
||||||
seeds = seeds,
|
seeds = seeds,
|
||||||
quality = quality,
|
quality = quality,
|
||||||
eta = eta,
|
eta = eta,
|
||||||
width = width,
|
width = width,
|
||||||
height = height,
|
height = height,
|
||||||
weights_path = weights_path,
|
weights_path = weights_path,
|
||||||
scheduler=scheduler,
|
scheduler=scheduler,
|
||||||
disable_tqdm = disable_tqdm,
|
disable_tqdm = disable_tqdm,
|
||||||
beta_start = beta_start,
|
beta_start = beta_start,
|
||||||
beta_end = beta_end,
|
beta_end = beta_end,
|
||||||
beta_schedule = beta_schedule
|
beta_schedule = beta_schedule
|
||||||
),
|
),
|
||||||
indent=2,
|
indent=2,
|
||||||
sort_keys=False,
|
sort_keys=False,
|
||||||
))
|
))
|
||||||
|
|
||||||
#print(scheduler)
|
#print(scheduler)
|
||||||
@ -1386,10 +1387,11 @@ def txt2vid(
|
|||||||
#flaxddpms=flaxddpms_scheduler,
|
#flaxddpms=flaxddpms_scheduler,
|
||||||
#flaxpndms=flaxpndms_scheduler,
|
#flaxpndms=flaxpndms_scheduler,
|
||||||
)
|
)
|
||||||
|
|
||||||
with st.session_state["progress_bar_text"].container():
|
with no_rerun:
|
||||||
with hc.HyLoader('Loading Models...', hc.Loaders.standard_loaders,index=[0]):
|
with st.session_state["progress_bar_text"].container():
|
||||||
load_diffusers_model(weights_path, torch_device)
|
with hc.HyLoader('Loading Models...', hc.Loaders.standard_loaders,index=[0]):
|
||||||
|
load_diffusers_model(weights_path, torch_device)
|
||||||
|
|
||||||
if "pipe" not in server_state:
|
if "pipe" not in server_state:
|
||||||
logger.error('wtf')
|
logger.error('wtf')
|
||||||
@ -1632,7 +1634,10 @@ def layout():
|
|||||||
#prompt = st.text_area("Input Text","")
|
#prompt = st.text_area("Input Text","")
|
||||||
placeholder = "A corgi wearing a top hat as an oil painting."
|
placeholder = "A corgi wearing a top hat as an oil painting."
|
||||||
prompt = st.text_area("Input Text","", placeholder=placeholder, height=54)
|
prompt = st.text_area("Input Text","", placeholder=placeholder, height=54)
|
||||||
sygil_suggestions.suggestion_area(placeholder)
|
|
||||||
|
if "defaults" in st.session_state:
|
||||||
|
if st.session_state["defaults"].general.enable_suggestions:
|
||||||
|
sygil_suggestions.suggestion_area(placeholder)
|
||||||
|
|
||||||
if "defaults" in st.session_state:
|
if "defaults" in st.session_state:
|
||||||
if st.session_state['defaults'].admin.global_negative_prompt:
|
if st.session_state['defaults'].admin.global_negative_prompt:
|
||||||
@ -1915,25 +1920,25 @@ def layout():
|
|||||||
#print("Loading models")
|
#print("Loading models")
|
||||||
# load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry.
|
# load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry.
|
||||||
#load_models(False, st.session_state["use_GFPGAN"], True, st.session_state["RealESRGAN_model"])
|
#load_models(False, st.session_state["use_GFPGAN"], True, st.session_state["RealESRGAN_model"])
|
||||||
with no_rerun:
|
#with no_rerun:
|
||||||
if st.session_state["use_GFPGAN"]:
|
if st.session_state["use_GFPGAN"]:
|
||||||
if "GFPGAN" in server_state:
|
if "GFPGAN" in server_state:
|
||||||
logger.info("GFPGAN already loaded")
|
logger.info("GFPGAN already loaded")
|
||||||
else:
|
|
||||||
with col2:
|
|
||||||
with hc.HyLoader('Loading Models...', hc.Loaders.standard_loaders,index=[0]):
|
|
||||||
# Load GFPGAN
|
|
||||||
if os.path.exists(st.session_state["defaults"].general.GFPGAN_dir):
|
|
||||||
try:
|
|
||||||
load_GFPGAN()
|
|
||||||
logger.info("Loaded GFPGAN")
|
|
||||||
except Exception:
|
|
||||||
import traceback
|
|
||||||
logger.error("Error loading GFPGAN:", file=sys.stderr)
|
|
||||||
logger.error(traceback.format_exc(), file=sys.stderr)
|
|
||||||
else:
|
else:
|
||||||
if "GFPGAN" in server_state:
|
with col2:
|
||||||
del server_state["GFPGAN"]
|
with hc.HyLoader('Loading Models...', hc.Loaders.standard_loaders,index=[0]):
|
||||||
|
# Load GFPGAN
|
||||||
|
if os.path.exists(st.session_state["defaults"].general.GFPGAN_dir):
|
||||||
|
try:
|
||||||
|
load_GFPGAN()
|
||||||
|
logger.info("Loaded GFPGAN")
|
||||||
|
except Exception:
|
||||||
|
import traceback
|
||||||
|
logger.error("Error loading GFPGAN:", file=sys.stderr)
|
||||||
|
logger.error(traceback.format_exc(), file=sys.stderr)
|
||||||
|
else:
|
||||||
|
if "GFPGAN" in server_state:
|
||||||
|
del server_state["GFPGAN"]
|
||||||
|
|
||||||
#try:
|
#try:
|
||||||
# run video generation
|
# run video generation
|
||||||
|
Loading…
Reference in New Issue
Block a user