Save original copy of image before upscaling or face fixing #103

This commit is contained in:
hlky 2022-08-27 05:54:59 +01:00
parent 343b4157d4
commit b9b74329ae
No known key found for this signature in database
GPG Key ID: 55A99F1E80D907D5

162
webui.py
View File

@ -487,6 +487,64 @@ def check_prompt_length(prompt, comments):
comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
def save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode):
filename_i = os.path.join(sample_path_i, filename)
if not jpg_sample:
if opt.save_metadata:
metadata = PngInfo()
metadata.add_text("SD:prompt", prompts[i])
metadata.add_text("SD:seed", str(seeds[i]))
metadata.add_text("SD:width", str(width))
metadata.add_text("SD:height", str(height))
metadata.add_text("SD:steps", str(steps))
metadata.add_text("SD:cfg_scale", str(cfg_scale))
metadata.add_text("SD:normalize_prompt_weights", str(normalize_prompt_weights))
metadata.add_text("SD:GFPGAN", str(use_GFPGAN and GFPGAN is not None))
image.save(f"{filename_i}.png", pnginfo=metadata)
else:
image.save(f"{filename_i}.png")
else:
image.save(f"{filename_i}.jpg", 'jpeg', quality=100, optimize=True)
if write_info_files:
# toggles differ for txt2img vs. img2img:
offset = 0 if init_img is None else 2
toggles = []
if prompt_matrix:
toggles.append(0)
if normalize_prompt_weights:
toggles.append(1)
if init_img is not None:
if uses_loopback:
toggles.append(2)
if uses_random_seed_loopback:
toggles.append(3)
if not skip_save:
toggles.append(2 + offset)
if not skip_grid:
toggles.append(3 + offset)
if sort_samples:
toggles.append(4 + offset)
if write_info_files:
toggles.append(5 + offset)
if use_GFPGAN:
toggles.append(6 + offset)
info_dict = dict(
target="txt2img" if init_img is None else "img2img",
prompt=prompts[i], ddim_steps=steps, toggles=toggles, sampler_name=sampler_name,
ddim_eta=ddim_eta, n_iter=n_iter, batch_size=batch_size, cfg_scale=cfg_scale,
seed=seed, width=width, height=height
)
if init_img is not None:
# Not yet any use for these, but they bloat up the files:
#info_dict["init_img"] = init_img
#info_dict["init_mask"] = init_mask
info_dict["denoising_strength"] = denoising_strength
info_dict["resize_mode"] = resize_mode
with open(f"{filename_i}.yaml", "w", encoding="utf8") as f:
yaml.dump(info_dict, f)
def get_next_sequence_number(path, prefix=''):
"""
@ -617,24 +675,56 @@ def process_images(
if opt.optimized:
modelFS.to(device)
x_samples_ddim = (model if not opt.optimized else modelFS).decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
for i, x_sample in enumerate(x_samples_ddim):
sanitized_prompt = prompts[i].replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})
if sort_samples:
sanitized_prompt = sanitized_prompt[:128] #200 is too long
sample_path_i = os.path.join(sample_path, sanitized_prompt)
os.makedirs(sample_path_i, exist_ok=True)
base_count = len([x for x in os.listdir(sample_path_i) if x.endswith(('.png', '.jpg'))]) - 1 # start at 0
filename = f"{base_count:05}-{seeds[i]}"
else:
sample_path_i = sample_path
base_count = len([x for x in os.listdir(sample_path_i) if x.endswith(('.png', '.jpg'))]) - 1 # start at 0
sanitized_prompt = sanitized_prompt
filename = f"{base_count:05}-{seeds[i]}_{sanitized_prompt}"[:128] #same as before
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
x_sample = x_sample.astype(np.uint8)
if use_GFPGAN and GFPGAN is not None:
torch_gc()
original_sample = x_sample
original_filename = filename
cropped_faces, restored_faces, restored_img = GFPGAN.enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
x_sample = restored_img[:,:,::-1]
image = Image.fromarray(x_sample)
filename = filename + '-gfpgan'
save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode)
filename = original_filename
x_sample = original_sample
if use_RealESRGAN and RealESRGAN is not None:
torch_gc()
original_sample = x_sample
original_filename = filename
if RealESRGAN.model.name != realesrgan_model_name:
try_loading_RealESRGAN(realesrgan_model_name)
output, img_mode = RealESRGAN.enhance(x_sample[:,:,::-1])
x_sample = output[:,:,::-1]
image = Image.fromarray(x_sample)
filename = filename + '-esrgan'
save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode)
filename = original_filename
x_sample = original_sample
image = Image.fromarray(x_sample)
if init_mask:
@ -656,74 +746,10 @@ def process_images(
init_mask = init_mask.convert('L')
image = Image.composite(init_img, image, init_mask)
sanitized_prompt = prompts[i].replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})
if sort_samples:
sanitized_prompt = sanitized_prompt[:128] #200 is too long
sample_path_i = os.path.join(sample_path, sanitized_prompt)
os.makedirs(sample_path_i, exist_ok=True)
base_count = get_next_sequence_number(sample_path_i)
filename = f"{base_count:05}-{seeds[i]}"
else:
sample_path_i = sample_path
base_count = get_next_sequence_number(sample_path_i)
sanitized_prompt = sanitized_prompt
filename = f"{base_count:05}-{seeds[i]}_{sanitized_prompt}"[:128] #same as before
if not skip_save:
filename_i = os.path.join(sample_path_i, filename)
if not jpg_sample:
if opt.save_metadata:
metadata = PngInfo()
metadata.add_text("SD:prompt", prompts[i])
metadata.add_text("SD:seed", str(seeds[i]))
metadata.add_text("SD:width", str(width))
metadata.add_text("SD:height", str(height))
metadata.add_text("SD:steps", str(steps))
metadata.add_text("SD:cfg_scale", str(cfg_scale))
metadata.add_text("SD:normalize_prompt_weights", str(normalize_prompt_weights))
metadata.add_text("SD:GFPGAN", str(use_GFPGAN and GFPGAN is not None))
image.save(f"{filename_i}.png", pnginfo=metadata)
else:
image.save(f"{filename_i}.png")
else:
image.save(f"{filename_i}.jpg", 'jpeg', quality=100, optimize=True)
if write_info_files:
# toggles differ for txt2img vs. img2img:
offset = 0 if init_img is None else 2
toggles = []
if prompt_matrix:
toggles.append(0)
if normalize_prompt_weights:
toggles.append(1)
if init_img is not None:
if uses_loopback:
toggles.append(2)
if uses_random_seed_loopback:
toggles.append(3)
if not skip_save:
toggles.append(2 + offset)
if not skip_grid:
toggles.append(3 + offset)
if sort_samples:
toggles.append(4 + offset)
if write_info_files:
toggles.append(5 + offset)
if use_GFPGAN:
toggles.append(6 + offset)
info_dict = dict(
target="txt2img" if init_img is None else "img2img",
prompt=prompts[i], ddim_steps=steps, toggles=toggles, sampler_name=sampler_name,
ddim_eta=ddim_eta, n_iter=n_iter, batch_size=batch_size, cfg_scale=cfg_scale,
seed=seed, width=width, height=height
)
if init_img is not None:
# Not yet any use for these, but they bloat up the files:
#info_dict["init_img"] = init_img
#info_dict["init_mask"] = init_mask
info_dict["denoising_strength"] = denoising_strength
info_dict["resize_mode"] = resize_mode
with open(f"{filename_i}.yaml", "w", encoding="utf8") as f:
yaml.dump(info_dict, f)
save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode)
output_images.append(image)