mirror of
https://github.com/Sygil-Dev/sygil-webui.git
synced 2024-12-15 14:31:44 +03:00
Moved the models to use the server_state component instead of session_state so it can be shared between multiple sessions, tabs and users as long as the streamlit server is running.
Moved the models to use the server_state component instead of session_state so it can be shared between multiple sessions, tabs and users as long as the streamlit server is running.
This commit is contained in:
commit
f4c8b9500f
@ -273,8 +273,13 @@ img2img:
|
||||
variant_seed: ""
|
||||
write_info_files: True
|
||||
|
||||
concepts_library:
|
||||
concepts_per_page: 12
|
||||
|
||||
gfpgan:
|
||||
strength: 100
|
||||
|
||||
textual_inversion:
|
||||
value: 0
|
||||
|
||||
|
@ -42,6 +42,7 @@ dependencies:
|
||||
- streamlit-on-Hover-tabs==1.0.1
|
||||
- streamlit-option-menu==0.3.2
|
||||
- streamlit_nested_layout
|
||||
- streamlit-server-state==0.14.2
|
||||
- test-tube>=0.7.5
|
||||
- tensorboard
|
||||
- torch-fidelity==0.3.0
|
||||
|
@ -6,6 +6,7 @@ from sd_utils import *
|
||||
|
||||
#streamlit components section
|
||||
import streamlit_nested_layout
|
||||
from streamlit_server_state import server_state, server_state_lock
|
||||
|
||||
#other imports
|
||||
from omegaconf import OmegaConf
|
||||
@ -17,9 +18,11 @@ def layout():
|
||||
st.header("Settings")
|
||||
|
||||
with st.form("Settings"):
|
||||
general_tab, txt2img_tab, img2img_tab, txt2vid_tab, textual_inversion_tab = st.tabs(['General', "Text-To-Image",
|
||||
general_tab, txt2img_tab, img2img_tab, \
|
||||
txt2vid_tab, textual_inversion_tab, concepts_library_tab = st.tabs(['General', "Text-To-Image",
|
||||
"Image-To-Image", "Text-To-Video",
|
||||
"Textual Inversion"])
|
||||
"Textual Inversion",
|
||||
"Concepts Library"])
|
||||
|
||||
with general_tab:
|
||||
col1, col2, col3, col4, col5 = st.columns(5, gap='large')
|
||||
@ -47,8 +50,8 @@ def layout():
|
||||
custom_models_available()
|
||||
|
||||
if st.session_state.CustomModel_available:
|
||||
st.session_state.default_model = st.selectbox("Default Model:", st.session_state.custom_models,
|
||||
index=st.session_state.custom_models.index(st.session_state['defaults'].general.default_model),
|
||||
st.session_state.default_model = st.selectbox("Default Model:", server_state["custom_models"],
|
||||
index=server_state["custom_models"].index(st.session_state['defaults'].general.default_model),
|
||||
help="Select the model you want to use. If you have placed custom models \
|
||||
on your 'models/custom' folder they will be shown here as well. The model name that will be shown here \
|
||||
is the same as the name the file for the model has on said folder, \
|
||||
@ -197,6 +200,14 @@ def layout():
|
||||
st.title("Textual Inversion")
|
||||
st.info("Under Construction. :construction_worker:")
|
||||
|
||||
with concepts_library_tab:
|
||||
st.title("Concepts Library")
|
||||
#st.info("Under Construction. :construction_worker:")
|
||||
col1, col2, col3, col4, col5 = st.columns(5, gap='large')
|
||||
with col1:
|
||||
st.session_state["defaults"].concepts_library.concepts_per_page = int(st.text_input("Concepts Per Page", value=st.session_state['defaults'].concepts_library.concepts_per_page,
|
||||
help="Number of concepts per page to show on the Concepts Library. Default: '12'"))
|
||||
|
||||
# add space for the buttons at the bottom
|
||||
st.markdown("---")
|
||||
|
||||
|
@ -28,8 +28,6 @@ from tqdm.auto import tqdm
|
||||
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
||||
from slugify import slugify
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
@ -40,7 +38,6 @@ def parse_args():
|
||||
"--pretrained_model_name_or_path",
|
||||
type=str,
|
||||
default=None,
|
||||
required=True,
|
||||
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -50,17 +47,16 @@ def parse_args():
|
||||
help="Pretrained tokenizer name or path if not the same as model_name",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data."
|
||||
"--train_data_dir", type=str, default=None, help="A folder containing the training data."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--placeholder_token",
|
||||
type=str,
|
||||
default=None,
|
||||
required=True,
|
||||
help="A token to use as a placeholder for the concept.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--initializer_token", type=str, default=None, required=True,help="A token to use as initializer word."
|
||||
"--initializer_token", type=str, default=None, help="A token to use as initializer word."
|
||||
)
|
||||
parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'")
|
||||
parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.")
|
||||
@ -68,7 +64,6 @@ def parse_args():
|
||||
"--output_dir",
|
||||
type=str,
|
||||
default="text-inversion-model",
|
||||
required=True,
|
||||
help="The output directory where the model predictions and checkpoints will be written.",
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
||||
@ -128,6 +123,31 @@ def parse_args():
|
||||
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
||||
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
||||
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
||||
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
||||
parser.add_argument(
|
||||
"--use_auth_token",
|
||||
action="store_true",
|
||||
help=(
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script with"
|
||||
" private models)."
|
||||
),
|
||||
)
|
||||
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
||||
parser.add_argument(
|
||||
"--hub_model_id",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The name of the repository to keep in sync with the local `output_dir`.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--logging_dir",
|
||||
type=str,
|
||||
default="logs",
|
||||
help=(
|
||||
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
||||
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mixed_precision",
|
||||
type=str,
|
||||
@ -144,14 +164,32 @@ def parse_args():
|
||||
"--checkpoint_frequency",
|
||||
type=int,
|
||||
default=500,
|
||||
help="How often to save a checkpoint",
|
||||
help="How often to save a checkpoint and sample image",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--stable_sample_batches",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Number of fixed seed sample batches to generate per checkpoint",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--random_sample_batches",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of random seed sample batches to generate per checkpoint",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sample_batch_size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of samples to generate per batch",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--custom_templates",
|
||||
type=str,
|
||||
default=None,
|
||||
help=(
|
||||
"A comma-delimited list of custom templates to use"
|
||||
"A comma-delimited list of custom template to use for samples, using {} as a placeholder for the concept."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -166,19 +204,10 @@ def parse_args():
|
||||
default=None,
|
||||
help="Path to a specific checkpoint to resume training from (ie, logs/token_name/2022-09-22T23-36-27/checkpoints/something.bin)."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--config",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to a JSON config file specifying the arguments to use. If resume_from is given, it is automatically inferred."
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
if args.config is not None:
|
||||
with open(args.config, 'rt') as f:
|
||||
args = parser.parse_args(namespace=argparse.Namespace(**json.load(f)))
|
||||
elif args.resume_from is not None:
|
||||
with open(f"{args.resume_from}/resume.json", 'rt') as f:
|
||||
if args.resume_from is not None:
|
||||
with open(Path(args.resume_from) / "resume.json", 'rt') as f:
|
||||
args = parser.parse_args(namespace=argparse.Namespace(**json.load(f)["args"]))
|
||||
|
||||
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
||||
@ -277,10 +306,10 @@ class TextualInversionDataset(Dataset):
|
||||
self._length = self.num_images * repeats
|
||||
|
||||
self.interpolation = {
|
||||
"linear": PIL.Image.LINEAR,
|
||||
"bilinear": PIL.Image.BILINEAR,
|
||||
"bicubic": PIL.Image.BICUBIC,
|
||||
"lanczos": PIL.Image.LANCZOS,
|
||||
"linear": PIL.Image.Resampling.BILINEAR,
|
||||
"bilinear": PIL.Image.Resampling.BILINEAR,
|
||||
"bicubic": PIL.Image.Resampling.BICUBIC,
|
||||
"lanczos": PIL.Image.Resampling.LANCZOS,
|
||||
}[interpolation]
|
||||
|
||||
self.templates = templates
|
||||
@ -329,6 +358,16 @@ class TextualInversionDataset(Dataset):
|
||||
return example
|
||||
|
||||
|
||||
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
|
||||
if token is None:
|
||||
token = HfFolder.get_token()
|
||||
if organization is None:
|
||||
username = whoami(token)["name"]
|
||||
return f"{username}/{model_id}"
|
||||
else:
|
||||
return f"{organization}/{model_id}"
|
||||
|
||||
|
||||
def freeze_params(params):
|
||||
for param in params:
|
||||
param.requires_grad = False
|
||||
@ -337,7 +376,7 @@ def freeze_params(params):
|
||||
def save_resume_file(basepath, args, extra = {}):
|
||||
info = {"args": vars(args)}
|
||||
info["args"].update(extra)
|
||||
with open(f"{basepath}/resume.json", "w") as f:
|
||||
with open(Path(basepath) / "resume.json", "w") as f:
|
||||
json.dump(info, f, indent=4)
|
||||
|
||||
|
||||
@ -352,6 +391,9 @@ class Checkpointer:
|
||||
placeholder_token_id,
|
||||
templates,
|
||||
output_dir,
|
||||
random_sample_batches,
|
||||
sample_batch_size,
|
||||
stable_sample_batches,
|
||||
seed
|
||||
):
|
||||
self.accelerator = accelerator
|
||||
@ -362,14 +404,17 @@ class Checkpointer:
|
||||
self.placeholder_token_id = placeholder_token_id
|
||||
self.templates = templates
|
||||
self.output_dir = output_dir
|
||||
self.random_sample_batches = random_sample_batches
|
||||
self.sample_batch_size = sample_batch_size
|
||||
self.stable_sample_batches = stable_sample_batches
|
||||
self.seed = seed
|
||||
|
||||
|
||||
def checkpoint(self, step, text_encoder):
|
||||
def checkpoint(self, step, text_encoder, save_samples=True):
|
||||
print("Saving checkpoint for step %d..." % step)
|
||||
with torch.autocast("cuda"):
|
||||
checkpoints_path = f"{self.output_dir}/checkpoints"
|
||||
os.makedirs(checkpoints_path, exist_ok=True)
|
||||
checkpoints_path = self.output_dir / "checkpoints"
|
||||
checkpoints_path.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
unwrapped = self.accelerator.unwrap_model(text_encoder)
|
||||
|
||||
@ -378,27 +423,94 @@ class Checkpointer:
|
||||
learned_embeds_dict = {self.placeholder_token: learned_embeds.detach().cpu()}
|
||||
|
||||
filename = f"learned_embeds_%s_%d.bin" % (slugify(self.placeholder_token), step)
|
||||
torch.save(learned_embeds_dict, f"{checkpoints_path}/{filename}")
|
||||
torch.save(learned_embeds_dict, f"{checkpoints_path}/last.bin")
|
||||
torch.save(learned_embeds_dict, checkpoints_path / filename)
|
||||
torch.save(learned_embeds_dict, checkpoints_path / "last.bin")
|
||||
del unwrapped
|
||||
return f"{checkpoints_path}/last.bin"
|
||||
return checkpoints_path / "last.bin"
|
||||
|
||||
|
||||
def save_samples(self, step, text_encoder, height, width, guidance_scale, eta, num_inference_steps):
|
||||
samples_path = self.output_dir / "samples"
|
||||
samples_path.mkdir(exist_ok=True, parents=True)
|
||||
checker = NoCheck()
|
||||
|
||||
with torch.autocast("cuda"):
|
||||
unwrapped = self.accelerator.unwrap_model(text_encoder)
|
||||
# Save a sample image
|
||||
pipeline = StableDiffusionPipeline(
|
||||
text_encoder=unwrapped,
|
||||
vae=self.vae,
|
||||
unet=self.unet,
|
||||
tokenizer=self.tokenizer,
|
||||
scheduler=PNDMScheduler(
|
||||
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True
|
||||
),
|
||||
safety_checker=NoCheck(),
|
||||
feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"),
|
||||
).to('cuda')
|
||||
pipeline.enable_attention_slicing()
|
||||
|
||||
if self.stable_sample_batches > 0:
|
||||
stable_latents = torch.randn(
|
||||
(self.sample_batch_size, pipeline.unet.in_channels, height // 8, width // 8),
|
||||
device=pipeline.device,
|
||||
generator=torch.Generator(device=pipeline.device).manual_seed(self.seed),
|
||||
)
|
||||
|
||||
stable_prompts = [choice.format(self.placeholder_token) for choice in (self.templates * self.sample_batch_size)[:self.sample_batch_size]]
|
||||
|
||||
# Generate and save stable samples
|
||||
for i in range(0, self.stable_sample_batches):
|
||||
samples = pipeline(
|
||||
prompt=stable_prompts,
|
||||
height=max(512, height),
|
||||
latents=stable_latents,
|
||||
width=max(512, width),
|
||||
guidance_scale=guidance_scale,
|
||||
eta=eta,
|
||||
num_inference_steps=num_inference_steps,
|
||||
output_type='pil'
|
||||
)["sample"]
|
||||
for idx, im in enumerate(samples):
|
||||
filename = f"stable_sample_%d_%d_step_%d.png" % (i+1, idx+1, step)
|
||||
im.save(samples_path / filename)
|
||||
|
||||
prompts = [choice.format(self.placeholder_token) for choice in random.choices(self.templates, k=self.sample_batch_size)]
|
||||
# Generate and save random samples
|
||||
for i in range(0, self.random_sample_batches):
|
||||
samples = pipeline(
|
||||
prompt=prompts,
|
||||
height=max(512, height),
|
||||
width=max(512, width),
|
||||
guidance_scale=guidance_scale,
|
||||
eta=eta,
|
||||
num_inference_steps=num_inference_steps,
|
||||
output_type='pil'
|
||||
)["sample"]
|
||||
for idx, im in enumerate(samples):
|
||||
filename = f"step_%d_sample_%d_%d.png" % (step, i+1, idx+1)
|
||||
im.save(samples_path / filename)
|
||||
|
||||
del im
|
||||
del pipeline
|
||||
del unwrapped
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
global_step_offset = 0
|
||||
if args.resume_from is not None:
|
||||
basepath = f"{args.resume_from}"
|
||||
basepath = Path(args.resume_from)
|
||||
print("Resuming state from %s" % args.resume_from)
|
||||
with open(f"{basepath}/resume.json", 'r') as f:
|
||||
with open(basepath / "resume.json", 'r') as f:
|
||||
state = json.load(f)
|
||||
global_step_offset = state["args"]["global_step"]
|
||||
|
||||
print("We've trained %d steps so far" % global_step_offset)
|
||||
else:
|
||||
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
||||
basepath = f"{args.output_dir}/{slugify(args.placeholder_token)}/{now}"
|
||||
os.makedirs(basepath, exist_ok=True)
|
||||
basepath = Path(args.logging_dir) / slugify(args.placeholder_token)
|
||||
basepath.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
|
||||
accelerator = Accelerator(
|
||||
@ -410,6 +522,23 @@ def main():
|
||||
if args.seed is not None:
|
||||
set_seed(args.seed)
|
||||
|
||||
# Handle the repository creation
|
||||
if accelerator.is_main_process:
|
||||
if args.push_to_hub:
|
||||
if args.hub_model_id is None:
|
||||
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
|
||||
else:
|
||||
repo_name = args.hub_model_id
|
||||
repo = Repository(args.output_dir, clone_from=repo_name)
|
||||
|
||||
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
|
||||
if "step_*" not in gitignore:
|
||||
gitignore.write("step_*\n")
|
||||
if "epoch_*" not in gitignore:
|
||||
gitignore.write("epoch_*\n")
|
||||
elif args.output_dir is not None:
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
# Load the tokenizer and add the placeholder token as a additional special token
|
||||
if args.tokenizer_name:
|
||||
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
|
||||
@ -487,6 +616,9 @@ def main():
|
||||
placeholder_token_id=placeholder_token_id,
|
||||
templates=templates,
|
||||
output_dir=basepath,
|
||||
sample_batch_size=args.sample_batch_size,
|
||||
random_sample_batches=args.random_sample_batches,
|
||||
stable_sample_batches=args.stable_sample_batches,
|
||||
seed=args.seed
|
||||
)
|
||||
|
||||
@ -518,7 +650,7 @@ def main():
|
||||
learnable_property=args.learnable_property,
|
||||
center_crop=args.center_crop,
|
||||
set="train",
|
||||
templates=templates
|
||||
templates=base_templates
|
||||
)
|
||||
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True)
|
||||
|
||||
@ -628,6 +760,8 @@ def main():
|
||||
"global_step": global_step + global_step_offset,
|
||||
"resume_checkpoint": str(Path(basepath) / "checkpoints" / "last.bin")
|
||||
})
|
||||
checkpointer.save_samples(global_step + global_step_offset, text_encoder,
|
||||
args.resolution, args.resolution, 7.5, 0.0, 25)
|
||||
|
||||
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
||||
progress_bar.set_postfix(**logs)
|
||||
@ -640,16 +774,36 @@ def main():
|
||||
|
||||
# Create the pipeline using using the trained modules and save it.
|
||||
if accelerator.is_main_process:
|
||||
pipeline = StableDiffusionPipeline(
|
||||
text_encoder=accelerator.unwrap_model(text_encoder),
|
||||
vae=vae,
|
||||
unet=unet,
|
||||
tokenizer=tokenizer,
|
||||
scheduler=PNDMScheduler(
|
||||
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True
|
||||
),
|
||||
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker"),
|
||||
feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"),
|
||||
)
|
||||
#pipeline.save_pretrained(args.output_dir)
|
||||
# Also save the newly trained embeddings
|
||||
learned_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[placeholder_token_id]
|
||||
learned_embeds_dict = {args.placeholder_token: learned_embeds.detach().cpu()}
|
||||
torch.save(learned_embeds_dict, f"{basepath}/learned_embeds.bin")
|
||||
torch.save(learned_embeds_dict, basepath / f"learned_embeds.bin")
|
||||
if global_step % args.checkpoint_frequency != 0:
|
||||
checkpointer.save_samples(global_step + global_step_offset, text_encoder,
|
||||
args.resolution, args.resolution, 7.5, 0.0, 25)
|
||||
|
||||
print("Saving resume state")
|
||||
save_resume_file(basepath, args, {
|
||||
"global_step": global_step + global_step_offset,
|
||||
"resume_checkpoint": f"{basepath}/checkpoints/last.bin"
|
||||
"resume_checkpoint": str(Path(basepath) / "checkpoints" / "last.bin")
|
||||
})
|
||||
|
||||
if args.push_to_hub:
|
||||
repo.push_to_hub(
|
||||
args, pipeline, repo, commit_message="End of training", blocking=False, auto_lfs_prune=True)
|
||||
|
||||
accelerator.end_training()
|
||||
|
||||
except KeyboardInterrupt:
|
||||
@ -658,7 +812,7 @@ def main():
|
||||
checkpointer.checkpoint(global_step + global_step_offset, text_encoder)
|
||||
save_resume_file(basepath, args, {
|
||||
"global_step": global_step + global_step_offset,
|
||||
"resume_checkpoint": f"{basepath}/checkpoints/last.bin"
|
||||
"resume_checkpoint": str(Path(basepath) / "checkpoints" / "last.bin")
|
||||
})
|
||||
quit()
|
||||
|
||||
|
@ -65,21 +65,21 @@ def img2img(prompt: str = '', init_info: any = None, init_info_mask: any = None,
|
||||
#use_RealESRGAN = 11 in toggles
|
||||
|
||||
if sampler_name == 'PLMS':
|
||||
sampler = PLMSSampler(st.session_state["model"])
|
||||
sampler = PLMSSampler(server_state["model"])
|
||||
elif sampler_name == 'DDIM':
|
||||
sampler = DDIMSampler(st.session_state["model"])
|
||||
sampler = DDIMSampler(server_state["model"])
|
||||
elif sampler_name == 'k_dpm_2_a':
|
||||
sampler = KDiffusionSampler(st.session_state["model"],'dpm_2_ancestral')
|
||||
sampler = KDiffusionSampler(server_state["model"],'dpm_2_ancestral')
|
||||
elif sampler_name == 'k_dpm_2':
|
||||
sampler = KDiffusionSampler(st.session_state["model"],'dpm_2')
|
||||
sampler = KDiffusionSampler(server_state["model"],'dpm_2')
|
||||
elif sampler_name == 'k_euler_a':
|
||||
sampler = KDiffusionSampler(st.session_state["model"],'euler_ancestral')
|
||||
sampler = KDiffusionSampler(server_state["model"],'euler_ancestral')
|
||||
elif sampler_name == 'k_euler':
|
||||
sampler = KDiffusionSampler(st.session_state["model"],'euler')
|
||||
sampler = KDiffusionSampler(server_state["model"],'euler')
|
||||
elif sampler_name == 'k_heun':
|
||||
sampler = KDiffusionSampler(st.session_state["model"],'heun')
|
||||
sampler = KDiffusionSampler(server_state["model"],'heun')
|
||||
elif sampler_name == 'k_lms':
|
||||
sampler = KDiffusionSampler(st.session_state["model"],'lms')
|
||||
sampler = KDiffusionSampler(server_state["model"],'lms')
|
||||
else:
|
||||
raise Exception("Unknown sampler: " + sampler_name)
|
||||
|
||||
@ -160,18 +160,18 @@ def img2img(prompt: str = '', init_info: any = None, init_info_mask: any = None,
|
||||
mask = (1 - mask)
|
||||
mask = np.tile(mask, (4, 1, 1))
|
||||
mask = mask[None].transpose(0, 1, 2, 3)
|
||||
mask = torch.from_numpy(mask).to(st.session_state["device"])
|
||||
mask = torch.from_numpy(mask).to(server_state["device"])
|
||||
|
||||
if st.session_state['defaults'].general.optimized:
|
||||
st.session_state.modelFS.to(st.session_state["device"] )
|
||||
server_state["modelFS"].to(server_state["device"] )
|
||||
|
||||
init_image = 2. * image - 1.
|
||||
init_image = init_image.to(st.session_state["device"])
|
||||
init_latent = (st.session_state["model"] if not st.session_state['defaults'].general.optimized else st.session_state.modelFS).get_first_stage_encoding((st.session_state["model"] if not st.session_state['defaults'].general.optimized else modelFS).encode_first_stage(init_image)) # move to latent space
|
||||
init_image = init_image.to(server_state["device"])
|
||||
init_latent = (server_state["model"] if not st.session_state['defaults'].general.optimized else server_state["modelFS"]).get_first_stage_encoding((server_state["model"] if not st.session_state['defaults'].general.optimized else modelFS).encode_first_stage(init_image)) # move to latent space
|
||||
|
||||
if st.session_state['defaults'].general.optimized:
|
||||
mem = torch.cuda.memory_allocated()/1e6
|
||||
st.session_state.modelFS.to("cpu")
|
||||
server_state["modelFS"].to("cpu")
|
||||
while(torch.cuda.memory_allocated()/1e6 >= mem):
|
||||
time.sleep(1)
|
||||
|
||||
@ -208,7 +208,7 @@ def img2img(prompt: str = '', init_info: any = None, init_info_mask: any = None,
|
||||
x0, z_mask = init_data
|
||||
|
||||
sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=0.0, verbose=False)
|
||||
z_enc = sampler.stochastic_encode(x0, torch.tensor([t_enc_steps]*batch_size).to(st.session_state["device"] ))
|
||||
z_enc = sampler.stochastic_encode(x0, torch.tensor([t_enc_steps]*batch_size).to(server_state["device"] ))
|
||||
|
||||
# Obliterate masked image
|
||||
if z_mask is not None and obliterate:
|
||||
@ -377,8 +377,8 @@ def layout():
|
||||
#folder then we show a menu to select which model we want to use, otherwise we use the main model for SD
|
||||
custom_models_available()
|
||||
if st.session_state["CustomModel_available"]:
|
||||
st.session_state["custom_model"] = st.selectbox("Custom Model:", st.session_state["custom_models"],
|
||||
index=st.session_state["custom_models"].index(st.session_state['defaults'].general.default_model),
|
||||
st.session_state["custom_model"] = st.selectbox("Custom Model:", server_state["custom_models"],
|
||||
index=server_state["custom_models"].index(st.session_state['defaults'].general.default_model),
|
||||
help="Select the model you want to use. This option is only available if you have custom models \
|
||||
on your 'models/custom' folder. The model name that will be shown here is the same as the name\
|
||||
the file for the model has on said folder, it is recommended to give the .ckpt file a name that \
|
||||
@ -442,13 +442,13 @@ def layout():
|
||||
help="Save a file next to the image with informartion about the generation.")
|
||||
save_as_jpg = st.checkbox("Save samples as jpg", value=st.session_state['defaults'].img2img.save_as_jpg, help="Saves the images as jpg instead of png.")
|
||||
|
||||
if st.session_state["GFPGAN_available"]:
|
||||
if server_state["GFPGAN_available"]:
|
||||
use_GFPGAN = st.checkbox("Use GFPGAN", value=st.session_state['defaults'].img2img.use_GFPGAN, help="Uses the GFPGAN model to improve faces after the generation.\
|
||||
This greatly improve the quality and consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.")
|
||||
else:
|
||||
use_GFPGAN = False
|
||||
|
||||
if st.session_state["RealESRGAN_available"]:
|
||||
if server_state["RealESRGAN_available"]:
|
||||
st.session_state["use_RealESRGAN"] = st.checkbox("Use RealESRGAN", value=st.session_state['defaults'].img2img.use_RealESRGAN,
|
||||
help="Uses the RealESRGAN model to upscale the images after the generation.\
|
||||
This greatly improve the quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.")
|
||||
|
@ -22,7 +22,7 @@ def sdConceptsBrowser(concepts, key=None):
|
||||
return component_value
|
||||
|
||||
|
||||
@st.cache(persist=True, allow_output_mutation=True, show_spinner=False, suppress_st_warning=True)
|
||||
@st.experimental_memo(persist="disk", show_spinner=False, suppress_st_warning=True)
|
||||
def getConceptsFromPath(page, conceptPerPage, searchText=""):
|
||||
#print("getConceptsFromPath", "page:", page, "conceptPerPage:", conceptPerPage, "searchText:", searchText)
|
||||
# get the path where the concepts are stored
|
||||
@ -97,7 +97,6 @@ def getConceptsFromPath(page, conceptPerPage, searchText=""):
|
||||
#print("Results:", [c["name"] for c in concepts])
|
||||
return concepts
|
||||
|
||||
|
||||
@st.cache(persist=True, allow_output_mutation=True, show_spinner=False, suppress_st_warning=True)
|
||||
def imageToBase64(image):
|
||||
import io
|
||||
@ -108,7 +107,7 @@ def imageToBase64(image):
|
||||
return img_str
|
||||
|
||||
|
||||
@st.cache(persist=True, allow_output_mutation=True, show_spinner=False, suppress_st_warning=True)
|
||||
@st.experimental_memo(persist="disk", show_spinner=False, suppress_st_warning=True)
|
||||
def getTotalNumberOfConcepts(searchText=""):
|
||||
# get the path where the concepts are stored
|
||||
path = os.path.join(
|
||||
@ -138,7 +137,7 @@ def layout():
|
||||
# Concept Library
|
||||
with tab_library:
|
||||
downloaded_concepts_count = getTotalNumberOfConcepts()
|
||||
concepts_per_page = 12
|
||||
concepts_per_page = st.session_state["defaults"].concepts_library.concepts_per_page
|
||||
|
||||
if not "results" in st.session_state:
|
||||
st.session_state["results"] = getConceptsFromPath(1, concepts_per_page, "")
|
||||
@ -178,7 +177,7 @@ def layout():
|
||||
|
||||
# Previous page
|
||||
with _previous_page:
|
||||
if st.button("<", key="cl_previous_page"):
|
||||
if st.button("Previous", key="cl_previous_page"):
|
||||
st.session_state["cl_current_page"] -= 1
|
||||
if st.session_state["cl_current_page"] <= 0:
|
||||
st.session_state["cl_current_page"] = last_page
|
||||
@ -190,7 +189,7 @@ def layout():
|
||||
|
||||
# Next page
|
||||
with _next_page:
|
||||
if st.button(">", key="cl_next_page"):
|
||||
if st.button("Next", key="cl_next_page"):
|
||||
st.session_state["cl_current_page"] += 1
|
||||
if st.session_state["cl_current_page"] > last_page:
|
||||
st.session_state["cl_current_page"] = 1
|
||||
|
@ -4,6 +4,10 @@ from webui_streamlit import st
|
||||
|
||||
# streamlit imports
|
||||
from streamlit import StopException
|
||||
|
||||
#streamlit components section
|
||||
from streamlit_server_state import server_state, server_state_lock
|
||||
|
||||
#other imports
|
||||
|
||||
import warnings
|
||||
@ -55,6 +59,7 @@ except:
|
||||
|
||||
# remove some annoying deprecation warnings that show every now and then.
|
||||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI
|
||||
mimetypes.init()
|
||||
@ -153,15 +158,17 @@ def human_readable_size(size, decimal_places=3):
|
||||
size /= 1024.0
|
||||
return f"{size:.{decimal_places}f}{unit}"
|
||||
|
||||
@retry(tries=5)
|
||||
|
||||
def load_models(continue_prev_run = False, use_GFPGAN=False, use_RealESRGAN=False, RealESRGAN_model="RealESRGAN_x4plus",
|
||||
CustomModel_available=False, custom_model="Stable Diffusion v1.4"):
|
||||
"""Load the different models. We also reuse the models that are already in memory to speed things up instead of loading them again. """
|
||||
|
||||
print ("Loading models.")
|
||||
|
||||
if "progress_bar_text" in st.session_state:
|
||||
st.session_state["progress_bar_text"].text("Loading models...")
|
||||
|
||||
|
||||
# Generate random run ID
|
||||
# Used to link runs linked w/ continue_prev_run which is not yet implemented
|
||||
# Use URL and filesystem safe version just in case.
|
||||
@ -171,83 +178,95 @@ def load_models(continue_prev_run = False, use_GFPGAN=False, use_RealESRGAN=Fals
|
||||
|
||||
# check what models we want to use and if the they are already loaded.
|
||||
|
||||
with server_state_lock["GFPGAN"]:
|
||||
if use_GFPGAN:
|
||||
if "GFPGAN" in st.session_state:
|
||||
if "GFPGAN" in server_state:
|
||||
print("GFPGAN already loaded")
|
||||
else:
|
||||
# Load GFPGAN
|
||||
if os.path.exists(st.session_state["defaults"].general.GFPGAN_dir):
|
||||
try:
|
||||
st.session_state["GFPGAN"] = load_GFPGAN()
|
||||
server_state["GFPGAN"] = load_GFPGAN()
|
||||
print("Loaded GFPGAN")
|
||||
except Exception:
|
||||
import traceback
|
||||
print("Error loading GFPGAN:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
else:
|
||||
if "GFPGAN" in st.session_state:
|
||||
del st.session_state["GFPGAN"]
|
||||
if "GFPGAN" in server_state:
|
||||
del server_state["GFPGAN"]
|
||||
|
||||
with server_state_lock["RealESRGAN"]:
|
||||
if use_RealESRGAN:
|
||||
if "RealESRGAN" in st.session_state and st.session_state["RealESRGAN"].model.name == RealESRGAN_model:
|
||||
if "RealESRGAN" in server_state and server_state["RealESRGAN"].model.name == RealESRGAN_model:
|
||||
print("RealESRGAN already loaded")
|
||||
else:
|
||||
#Load RealESRGAN
|
||||
try:
|
||||
# We first remove the variable in case it has something there,
|
||||
# some errors can load the model incorrectly and leave things in memory.
|
||||
del st.session_state["RealESRGAN"]
|
||||
del server_state["RealESRGAN"]
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
if os.path.exists(st.session_state["defaults"].general.RealESRGAN_dir):
|
||||
# st.session_state is used for keeping the models in memory across multiple pages or runs.
|
||||
st.session_state["RealESRGAN"] = load_RealESRGAN(RealESRGAN_model)
|
||||
print("Loaded RealESRGAN with model "+ st.session_state["RealESRGAN"].model.name)
|
||||
server_state["RealESRGAN"] = load_RealESRGAN(RealESRGAN_model)
|
||||
print("Loaded RealESRGAN with model "+ server_state["RealESRGAN"].model.name)
|
||||
|
||||
else:
|
||||
if "RealESRGAN" in st.session_state:
|
||||
del st.session_state["RealESRGAN"]
|
||||
if "RealESRGAN" in server_state:
|
||||
del server_state["RealESRGAN"]
|
||||
|
||||
if "model" in st.session_state:
|
||||
if "model" in st.session_state and st.session_state["loaded_model"] == custom_model:
|
||||
with server_state_lock["model"], server_state_lock["modelCS"], server_state_lock["modelFS"], server_state_lock["loaded_model"]:
|
||||
|
||||
if "model" in server_state:
|
||||
if "model" in server_state and server_state["loaded_model"] == custom_model:
|
||||
# TODO: check if the optimized mode was changed?
|
||||
if "pipe" in st.session_state:
|
||||
del st.session_state.pipe
|
||||
|
||||
print("Model already loaded")
|
||||
|
||||
return
|
||||
else:
|
||||
try:
|
||||
del st.session_state.model
|
||||
del st.session_state.modelCS
|
||||
del st.session_state.modelFS
|
||||
del st.session_state.loaded_model
|
||||
del server_state["model"]
|
||||
del server_state["modelCS"]
|
||||
del server_state["modelFS"]
|
||||
del server_state["loaded_model"]
|
||||
|
||||
if "pipe" in st.session_state:
|
||||
del st.session_state.pipe
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
# if the model from txt2vid is in memory we need to remove it to improve performance.
|
||||
with server_state_lock["pipe"]:
|
||||
if "pipe" in server_state:
|
||||
del server_state["pipe"]
|
||||
|
||||
# At this point the model is either
|
||||
# is not loaded yet or have been evicted:
|
||||
# load new model into memory
|
||||
st.session_state.custom_model = custom_model
|
||||
server_state["custom_model"] = custom_model
|
||||
|
||||
config, device, model, modelCS, modelFS = load_sd_model(custom_model)
|
||||
|
||||
st.session_state.device = device
|
||||
st.session_state.model = model
|
||||
st.session_state.modelCS = modelCS
|
||||
st.session_state.modelFS = modelFS
|
||||
st.session_state.loaded_model = custom_model
|
||||
server_state["device"] = device
|
||||
server_state["model"] = model
|
||||
|
||||
server_state["modelCS"] = modelCS
|
||||
server_state["modelFS"] = modelFS
|
||||
server_state["loaded_model"] = custom_model
|
||||
|
||||
#trying to disable multiprocessing as it makes it so streamlit cant stop when the
|
||||
# model is loaded in memory and you need to kill the process sometimes.
|
||||
try:
|
||||
server_state["model"].args.use_multiprocessing_for_evaluation = False
|
||||
except:
|
||||
pass
|
||||
|
||||
if st.session_state.defaults.general.enable_attention_slicing:
|
||||
st.session_state.model.enable_attention_slicing()
|
||||
server_state["model"].enable_attention_slicing()
|
||||
|
||||
if st.session_state.defaults.general.enable_minimal_memory_usage:
|
||||
st.session_state.model.enable_minimal_memory_usage()
|
||||
server_state["model"].enable_minimal_memory_usage()
|
||||
|
||||
print("Model loaded.")
|
||||
|
||||
@ -584,6 +603,7 @@ def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
|
||||
def to_d(x, sigma, denoised):
|
||||
"""Converts a denoiser output to a Karras ODE derivative."""
|
||||
return (x - denoised) / append_dims(sigma, x.ndim)
|
||||
|
||||
def linear_multistep_coeff(order, t, i, j):
|
||||
if order - 1 > i:
|
||||
raise ValueError(f'Order {order} too high for step {i}')
|
||||
@ -656,6 +676,7 @@ def torch_gc():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
@retry(tries=5)
|
||||
def load_GFPGAN():
|
||||
model_name = 'GFPGANv1.3'
|
||||
model_path = os.path.join(st.session_state['defaults'].general.GFPGAN_dir, 'experiments/pretrained_models', model_name + '.pth')
|
||||
@ -673,6 +694,7 @@ def load_GFPGAN():
|
||||
instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device(f"cuda:{st.session_state['defaults'].general.gpu}"))
|
||||
return instance
|
||||
|
||||
@retry(tries=5)
|
||||
def load_RealESRGAN(model_name: str):
|
||||
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||||
RealESRGAN_models = {
|
||||
@ -700,6 +722,7 @@ def load_RealESRGAN(model_name: str):
|
||||
return instance
|
||||
|
||||
#
|
||||
@retry(tries=5)
|
||||
def load_LDSR(checking=False):
|
||||
model_name = 'model'
|
||||
yaml_name = 'project'
|
||||
@ -719,6 +742,8 @@ def load_LDSR(checking=False):
|
||||
|
||||
#
|
||||
LDSR = None
|
||||
|
||||
@retry(tries=5)
|
||||
def try_loading_LDSR(model_name: str,checking=False):
|
||||
global LDSR
|
||||
if os.path.exists(st.session_state['defaults'].general.LDSR_dir):
|
||||
@ -739,8 +764,10 @@ def try_loading_LDSR(model_name: str,checking=False):
|
||||
|
||||
|
||||
# Loads Stable Diffusion model by name
|
||||
#@retry(tries=5)
|
||||
def load_sd_model(model_name: str) -> [any, any, any, any, any]:
|
||||
ckpt_path = st.session_state.defaults.general.default_model_path
|
||||
|
||||
if model_name != st.session_state.defaults.general.default_model:
|
||||
ckpt_path = os.path.join("models", "custom", f"{model_name}.ckpt")
|
||||
|
||||
@ -864,12 +891,12 @@ def generation_callback(img, i=0):
|
||||
# It can probably be done in a better way for someone who knows what they're doing. I don't.
|
||||
#print (img,isinstance(img, torch.Tensor))
|
||||
if isinstance(img, torch.Tensor):
|
||||
x_samples_ddim = (st.session_state["model"].to('cuda') if not st.session_state['defaults'].general.optimized else st.session_state.modelFS.to('cuda')
|
||||
x_samples_ddim = (server_state["model"].to('cuda') if not st.session_state['defaults'].general.optimized else server_state["modelFS"].to('cuda')
|
||||
).decode_first_stage(img).to('cuda')
|
||||
else:
|
||||
# When using the k Diffusion samplers they return a dict instead of a tensor that look like this:
|
||||
# {'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}
|
||||
x_samples_ddim = (st.session_state["model"].to('cuda') if not st.session_state['defaults'].general.optimized else st.session_state.modelFS.to('cuda')
|
||||
x_samples_ddim = (server_state["model"].to('cuda') if not st.session_state['defaults'].general.optimized else server_state["modelFS"].to('cuda')
|
||||
).decode_first_stage(img["denoised"]).to('cuda')
|
||||
|
||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
@ -954,6 +981,7 @@ def slerp(device, t, v0:torch.Tensor, v1:torch.Tensor, DOT_THRESHOLD=0.9995):
|
||||
return v2
|
||||
|
||||
#
|
||||
@st.experimental_memo(persist="disk", show_spinner=False, suppress_st_warning=True)
|
||||
def optimize_update_preview_frequency(current_chunk_speed, previous_chunk_speed_list, update_preview_frequency, update_preview_frequency_list):
|
||||
"""Find the optimal update_preview_frequency value maximizing
|
||||
performance while minimizing the time between updates."""
|
||||
@ -989,8 +1017,8 @@ def get_font(fontsize):
|
||||
raise Exception(f"No usable font found (tried {', '.join(fonts)})")
|
||||
|
||||
def load_embeddings(fp):
|
||||
if fp is not None and hasattr(st.session_state["model"], "embedding_manager"):
|
||||
st.session_state["model"].embedding_manager.load(fp['name'])
|
||||
if fp is not None and hasattr(server_state["model"], "embedding_manager"):
|
||||
server_state["model"].embedding_manager.load(fp['name'])
|
||||
|
||||
def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None):
|
||||
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
|
||||
@ -1148,10 +1176,10 @@ def enable_minimal_memory_usage(model):
|
||||
def check_prompt_length(prompt, comments):
|
||||
"""this function tests if prompt is too long, and if so, adds a message to comments"""
|
||||
|
||||
tokenizer = (st.session_state["model"] if not st.session_state['defaults'].general.optimized else st.session_state.modelCS).cond_stage_model.tokenizer
|
||||
max_length = (st.session_state["model"] if not st.session_state['defaults'].general.optimized else st.session_state.modelCS).cond_stage_model.max_length
|
||||
tokenizer = (server_state["model"] if not st.session_state['defaults'].general.optimized else server_state["modelCS"]).cond_stage_model.tokenizer
|
||||
max_length = (server_state["model"] if not st.session_state['defaults'].general.optimized else server_state["modelCS"]).cond_stage_model.max_length
|
||||
|
||||
info = (st.session_state["model"] if not st.session_state['defaults'].general.optimized else st.session_state.modelCS).cond_stage_model.tokenizer([prompt], truncation=True, max_length=max_length,
|
||||
info = (server_state["model"] if not st.session_state['defaults'].general.optimized else server_state["modelCS"]).cond_stage_model.tokenizer([prompt], truncation=True, max_length=max_length,
|
||||
return_overflowing_tokens=True, padding="max_length", return_tensors="pt")
|
||||
ovf = info['overflowing_tokens'][0]
|
||||
overflowing_count = ovf.shape[0]
|
||||
@ -1169,17 +1197,17 @@ def custom_models_available():
|
||||
#
|
||||
# Allow for custom models to be used instead of the default one,
|
||||
# an example would be Waifu-Diffusion or any other fine tune of stable diffusion
|
||||
st.session_state["custom_models"]:sorted = []
|
||||
server_state["custom_models"]:sorted = []
|
||||
|
||||
for root, dirs, files in os.walk(os.path.join("models", "custom")):
|
||||
for file in files:
|
||||
if os.path.splitext(file)[1] == '.ckpt':
|
||||
st.session_state["custom_models"].append(os.path.splitext(file)[0])
|
||||
server_state["custom_models"].append(os.path.splitext(file)[0])
|
||||
|
||||
|
||||
if len(st.session_state["custom_models"]) > 0:
|
||||
if len(server_state["custom_models"]) > 0:
|
||||
st.session_state["CustomModel_available"] = True
|
||||
st.session_state["custom_models"].append("Stable Diffusion v1.4")
|
||||
server_state["custom_models"].append("Stable Diffusion v1.4")
|
||||
else:
|
||||
st.session_state["CustomModel_available"] = False
|
||||
|
||||
@ -1217,7 +1245,7 @@ def save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, widt
|
||||
target="txt2img" if init_img is None else "img2img",
|
||||
prompt=prompts[i], ddim_steps=steps, toggles=toggles, sampler_name=sampler_name,
|
||||
ddim_eta=ddim_eta, n_iter=n_iter, batch_size=batch_size, cfg_scale=cfg_scale,
|
||||
seed=seeds[i], width=width, height=height, normalize_prompt_weights=normalize_prompt_weights, model_name=st.session_state["loaded_model"])
|
||||
seed=seeds[i], width=width, height=height, normalize_prompt_weights=normalize_prompt_weights, model_name=server_state["loaded_model"])
|
||||
# Not yet any use for these, but they bloat up the files:
|
||||
# info_dict["init_img"] = init_img
|
||||
# info_dict["init_mask"] = init_mask
|
||||
@ -1386,8 +1414,8 @@ def process_images(
|
||||
|
||||
if prompt_tokens:
|
||||
# compviz
|
||||
tokenizer = (st.session_state["model"] if not st.session_state['defaults'].general.optimized else st.session_state.modelCS).cond_stage_model.tokenizer
|
||||
text_encoder = (st.session_state["model"] if not st.session_state['defaults'].general.optimized else st.session_state.modelCS).cond_stage_model.transformer
|
||||
tokenizer = (server_state["model"] if not st.session_state['defaults'].general.optimized else server_state["modelCS"]).cond_stage_model.tokenizer
|
||||
text_encoder = (server_state["model"] if not st.session_state['defaults'].general.optimized else server_state["modelCS"]).cond_stage_model.transformer
|
||||
|
||||
# diffusers
|
||||
#tokenizer = pipe.tokenizer
|
||||
@ -1471,7 +1499,7 @@ def process_images(
|
||||
output_images = []
|
||||
grid_captions = []
|
||||
stats = []
|
||||
with torch.no_grad(), precision_scope("cuda"), (st.session_state["model"].ema_scope() if not st.session_state['defaults'].general.optimized else nullcontext()):
|
||||
with torch.no_grad(), precision_scope("cuda"), (server_state["model"].ema_scope() if not st.session_state['defaults'].general.optimized else nullcontext()):
|
||||
init_data = func_init()
|
||||
tic = time.time()
|
||||
|
||||
@ -1497,9 +1525,9 @@ def process_images(
|
||||
print(prompt)
|
||||
|
||||
if st.session_state['defaults'].general.optimized:
|
||||
st.session_state.modelCS.to(st.session_state['defaults'].general.gpu)
|
||||
server_state["modelCS"].to(st.session_state['defaults'].general.gpu)
|
||||
|
||||
uc = (st.session_state["model"] if not st.session_state['defaults'].general.optimized else st.session_state.modelCS).get_learned_conditioning(len(prompts) * [negprompt])
|
||||
uc = (server_state["model"] if not st.session_state['defaults'].general.optimized else server_state["modelCS"]).get_learned_conditioning(len(prompts) * [negprompt])
|
||||
|
||||
if isinstance(prompts, tuple):
|
||||
prompts = list(prompts)
|
||||
@ -1513,23 +1541,23 @@ def process_images(
|
||||
c = torch.zeros_like(uc) # i dont know if this is correct.. but it works
|
||||
for i in range(0, len(weighted_subprompts)):
|
||||
# note if alpha negative, it functions same as torch.sub
|
||||
c = torch.add(c, (st.session_state["model"] if not st.session_state['defaults'].general.optimized else st.session_state.modelCS).get_learned_conditioning(weighted_subprompts[i][0]), alpha=weighted_subprompts[i][1])
|
||||
c = torch.add(c, (server_state["model"] if not st.session_state['defaults'].general.optimized else server_state["modelCS"]).get_learned_conditioning(weighted_subprompts[i][0]), alpha=weighted_subprompts[i][1])
|
||||
else: # just behave like usual
|
||||
c = (st.session_state["model"] if not st.session_state['defaults'].general.optimized else st.session_state.modelCS).get_learned_conditioning(prompts)
|
||||
c = (server_state["model"] if not st.session_state['defaults'].general.optimized else server_state["modelCS"]).get_learned_conditioning(prompts)
|
||||
|
||||
|
||||
shape = [opt_C, height // opt_f, width // opt_f]
|
||||
|
||||
if st.session_state['defaults'].general.optimized:
|
||||
mem = torch.cuda.memory_allocated()/1e6
|
||||
st.session_state.modelCS.to("cpu")
|
||||
server_state["modelCS"].to("cpu")
|
||||
while(torch.cuda.memory_allocated()/1e6 >= mem):
|
||||
time.sleep(1)
|
||||
|
||||
if noise_mode == 1 or noise_mode == 3:
|
||||
# TODO params for find_noise_to_image
|
||||
x = torch.cat(batch_size * [find_noise_for_image(
|
||||
st.session_state["model"], st.session_state["device"],
|
||||
server_state["model"], server_state["device"],
|
||||
init_img.convert('RGB'), '', find_noise_steps, 0.0, normalize=True,
|
||||
generation_callback=generation_callback,
|
||||
)], dim=0)
|
||||
@ -1551,9 +1579,9 @@ def process_images(
|
||||
samples_ddim = func_sample(init_data=init_data, x=x, conditioning=c, unconditional_conditioning=uc, sampler_name=sampler_name)
|
||||
|
||||
if st.session_state['defaults'].general.optimized:
|
||||
st.session_state.modelFS.to(st.session_state['defaults'].general.gpu)
|
||||
server_state["modelFS"].to(st.session_state['defaults'].general.gpu)
|
||||
|
||||
x_samples_ddim = (st.session_state["model"] if not st.session_state['defaults'].general.optimized else st.session_state.modelFS).decode_first_stage(samples_ddim)
|
||||
x_samples_ddim = (server_state["model"] if not st.session_state['defaults'].general.optimized else server_state["modelFS"]).decode_first_stage(samples_ddim)
|
||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
run_images = []
|
||||
@ -1567,7 +1595,7 @@ def process_images(
|
||||
full_path = os.path.join(os.getcwd(), sample_path, sanitized_prompt)
|
||||
|
||||
|
||||
sanitized_prompt = sanitized_prompt[:220-len(full_path)]
|
||||
sanitized_prompt = sanitized_prompt[:200-len(full_path)]
|
||||
sample_path_i = os.path.join(sample_path, sanitized_prompt)
|
||||
|
||||
#print(f"output folder length: {len(os.path.join(os.getcwd(), sample_path_i))}")
|
||||
@ -1580,7 +1608,7 @@ def process_images(
|
||||
full_path = os.path.join(os.getcwd(), sample_path)
|
||||
sample_path_i = sample_path
|
||||
base_count = get_next_sequence_number(sample_path_i)
|
||||
filename = f"{base_count:05}-{steps}_{sampler_name}_{seeds[i]}_{sanitized_prompt}"[:220-len(full_path)] #same as before
|
||||
filename = f"{base_count:05}-{steps}_{sampler_name}_{seeds[i]}_{sanitized_prompt}"[:200-len(full_path)] #same as before
|
||||
|
||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
@ -1590,11 +1618,11 @@ def process_images(
|
||||
|
||||
st.session_state["preview_image"].image(image)
|
||||
|
||||
if use_GFPGAN and st.session_state["GFPGAN"] is not None and not use_RealESRGAN:
|
||||
if use_GFPGAN and server_state["GFPGAN"] is not None and not use_RealESRGAN:
|
||||
st.session_state["progress_bar_text"].text("Running GFPGAN on image %d of %d..." % (i+1, len(x_samples_ddim)))
|
||||
#skip_save = True # #287 >_>
|
||||
torch_gc()
|
||||
cropped_faces, restored_faces, restored_img = st.session_state["GFPGAN"].enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
|
||||
cropped_faces, restored_faces, restored_img = server_state["GFPGAN"].enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
|
||||
gfpgan_sample = restored_img[:,:,::-1]
|
||||
gfpgan_image = Image.fromarray(gfpgan_sample)
|
||||
gfpgan_filename = original_filename + '-gfpgan'
|
||||
@ -1602,7 +1630,7 @@ def process_images(
|
||||
save_sample(gfpgan_image, sample_path_i, gfpgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
|
||||
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback,
|
||||
uses_random_seed_loopback, save_grid, sort_samples, sampler_name, ddim_eta,
|
||||
n_iter, batch_size, i, denoising_strength, resize_mode, False, st.session_state["loaded_model"])
|
||||
n_iter, batch_size, i, denoising_strength, resize_mode, False, server_state["loaded_model"])
|
||||
|
||||
output_images.append(gfpgan_image) #287
|
||||
run_images.append(gfpgan_image)
|
||||
@ -1610,16 +1638,16 @@ def process_images(
|
||||
if simple_templating:
|
||||
grid_captions.append( captions[i] + "\ngfpgan" )
|
||||
|
||||
elif use_RealESRGAN and st.session_state["RealESRGAN"] is not None and not use_GFPGAN:
|
||||
elif use_RealESRGAN and server_state["RealESRGAN"] is not None and not use_GFPGAN:
|
||||
st.session_state["progress_bar_text"].text("Running RealESRGAN on image %d of %d..." % (i+1, len(x_samples_ddim)))
|
||||
#skip_save = True # #287 >_>
|
||||
torch_gc()
|
||||
|
||||
if st.session_state["RealESRGAN"].model.name != realesrgan_model_name:
|
||||
if server_state["RealESRGAN"].model.name != realesrgan_model_name:
|
||||
#try_loading_RealESRGAN(realesrgan_model_name)
|
||||
load_models(use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, RealESRGAN_model=realesrgan_model_name)
|
||||
|
||||
output, img_mode = st.session_state["RealESRGAN"].enhance(x_sample[:,:,::-1])
|
||||
output, img_mode = server_state["RealESRGAN"].enhance(x_sample[:,:,::-1])
|
||||
esrgan_filename = original_filename + '-esrgan4x'
|
||||
esrgan_sample = output[:,:,::-1]
|
||||
esrgan_image = Image.fromarray(esrgan_sample)
|
||||
@ -1630,7 +1658,7 @@ def process_images(
|
||||
|
||||
save_sample(esrgan_image, sample_path_i, esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
|
||||
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback,
|
||||
save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, False, st.session_state["loaded_model"])
|
||||
save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, False, server_state["loaded_model"])
|
||||
|
||||
output_images.append(esrgan_image) #287
|
||||
run_images.append(esrgan_image)
|
||||
@ -1638,25 +1666,25 @@ def process_images(
|
||||
if simple_templating:
|
||||
grid_captions.append( captions[i] + "\nesrgan" )
|
||||
|
||||
elif use_RealESRGAN and st.session_state["RealESRGAN"] is not None and use_GFPGAN and st.session_state["GFPGAN"] is not None:
|
||||
elif use_RealESRGAN and server_state["RealESRGAN"] is not None and use_GFPGAN and server_state["GFPGAN"] is not None:
|
||||
st.session_state["progress_bar_text"].text("Running GFPGAN+RealESRGAN on image %d of %d..." % (i+1, len(x_samples_ddim)))
|
||||
#skip_save = True # #287 >_>
|
||||
torch_gc()
|
||||
cropped_faces, restored_faces, restored_img = st.session_state["GFPGAN"].enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
|
||||
cropped_faces, restored_faces, restored_img = server_state["GFPGAN"].enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
|
||||
gfpgan_sample = restored_img[:,:,::-1]
|
||||
|
||||
if st.session_state["RealESRGAN"].model.name != realesrgan_model_name:
|
||||
if server_state["RealESRGAN"].model.name != realesrgan_model_name:
|
||||
#try_loading_RealESRGAN(realesrgan_model_name)
|
||||
load_models(use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, RealESRGAN_model=realesrgan_model_name)
|
||||
|
||||
output, img_mode = st.session_state["RealESRGAN"].enhance(gfpgan_sample[:,:,::-1])
|
||||
output, img_mode = server_state["RealESRGAN"].enhance(gfpgan_sample[:,:,::-1])
|
||||
gfpgan_esrgan_filename = original_filename + '-gfpgan-esrgan4x'
|
||||
gfpgan_esrgan_sample = output[:,:,::-1]
|
||||
gfpgan_esrgan_image = Image.fromarray(gfpgan_esrgan_sample)
|
||||
|
||||
save_sample(gfpgan_esrgan_image, sample_path_i, gfpgan_esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
|
||||
normalize_prompt_weights, False, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback,
|
||||
save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, False, st.session_state["loaded_model"])
|
||||
save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, False, server_state["loaded_model"])
|
||||
|
||||
output_images.append(gfpgan_esrgan_image) #287
|
||||
run_images.append(gfpgan_esrgan_image)
|
||||
@ -1674,16 +1702,16 @@ def process_images(
|
||||
init_img = init_img.convert('RGB')
|
||||
image = image.convert('RGB')
|
||||
|
||||
if use_RealESRGAN and st.session_state["RealESRGAN"] is not None:
|
||||
if st.session_state["RealESRGAN"].model.name != realesrgan_model_name:
|
||||
if use_RealESRGAN and server_state["RealESRGAN"] is not None:
|
||||
if server_state["RealESRGAN"].model.name != realesrgan_model_name:
|
||||
#try_loading_RealESRGAN(realesrgan_model_name)
|
||||
load_models(use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, RealESRGAN_model=realesrgan_model_name)
|
||||
|
||||
output, img_mode = st.session_state["RealESRGAN"].enhance(np.array(init_img, dtype=np.uint8))
|
||||
output, img_mode = server_state["RealESRGAN"].enhance(np.array(init_img, dtype=np.uint8))
|
||||
init_img = Image.fromarray(output)
|
||||
init_img = init_img.convert('RGB')
|
||||
|
||||
output, img_mode = st.session_state["RealESRGAN"].enhance(np.array(init_mask, dtype=np.uint8))
|
||||
output, img_mode = server_state["RealESRGAN"].enhance(np.array(init_mask, dtype=np.uint8))
|
||||
init_mask = Image.fromarray(output)
|
||||
init_mask = init_mask.convert('L')
|
||||
|
||||
@ -1692,7 +1720,7 @@ def process_images(
|
||||
if save_individual_images:
|
||||
save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
|
||||
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback,
|
||||
save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images, st.session_state["loaded_model"])
|
||||
save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images, server_state["loaded_model"])
|
||||
|
||||
#if add_original_image or not simple_templating:
|
||||
#output_images.append(image)
|
||||
@ -1701,7 +1729,7 @@ def process_images(
|
||||
|
||||
if st.session_state['defaults'].general.optimized:
|
||||
mem = torch.cuda.memory_allocated()/1e6
|
||||
st.session_state.modelFS.to("cpu")
|
||||
server_state["modelFS"].to("cpu")
|
||||
while(torch.cuda.memory_allocated()/1e6 >= mem):
|
||||
time.sleep(1)
|
||||
|
||||
@ -1735,7 +1763,7 @@ def process_images(
|
||||
output_images.insert(0, grid)
|
||||
|
||||
grid_count = get_next_sequence_number(outpath, 'grid-')
|
||||
grid_file = f"grid-{grid_count:05}-{seed}_{slugify(prompts[i].replace(' ', '_')[:220-len(full_path)])}.{grid_ext}"
|
||||
grid_file = f"grid-{grid_count:05}-{seed}_{slugify(prompts[i].replace(' ', '_')[:200-len(full_path)])}.{grid_ext}"
|
||||
grid.save(os.path.join(outpath, grid_file), grid_format, quality=grid_quality, lossless=grid_lossless, optimize=True)
|
||||
|
||||
toc = time.time()
|
||||
@ -1745,7 +1773,7 @@ def process_images(
|
||||
|
||||
info = f"""
|
||||
{prompt}
|
||||
Steps: {steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', Denoising strength: '+str(denoising_strength) if init_img is not None else ''}{', GFPGAN' if use_GFPGAN and st.session_state["GFPGAN"] is not None else ''}{', '+realesrgan_model_name if use_RealESRGAN and st.session_state["RealESRGAN"] is not None else ''}{', Prompt Matrix Mode.' if prompt_matrix else ''}""".strip()
|
||||
Steps: {steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', Denoising strength: '+str(denoising_strength) if init_img is not None else ''}{', GFPGAN' if use_GFPGAN and server_state["GFPGAN"] is not None else ''}{', '+realesrgan_model_name if use_RealESRGAN and server_state["RealESRGAN"] is not None else ''}{', Prompt Matrix Mode.' if prompt_matrix else ''}""".strip()
|
||||
stats = f'''
|
||||
Took { round(time_diff, 2) }s total ({ round(time_diff/(len(all_prompts)),2) }s per image)
|
||||
Peak memory usage: { -(mem_max_used // -1_048_576) } MiB / { -(mem_total // -1_048_576) } MiB / { round(mem_max_used/mem_total*100, 3) }%'''
|
||||
|
@ -1,29 +1,49 @@
|
||||
import gc
|
||||
import inspect
|
||||
import warnings
|
||||
from tqdm.auto import tqdm
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import torch
|
||||
from diffusers import ModelMixin
|
||||
|
||||
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
||||
|
||||
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
||||
from diffusers.pipeline_utils import DiffusionPipeline
|
||||
from diffusers.pipelines.stable_diffusion.safety_checker import \
|
||||
StableDiffusionSafetyChecker
|
||||
from diffusers.schedulers import (DDIMScheduler, LMSDiscreteScheduler,
|
||||
PNDMScheduler)
|
||||
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
||||
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
||||
from diffusers import StableDiffusionPipelineOutput
|
||||
#from diffusers.safety_checker import StableDiffusionSafetyChecker
|
||||
|
||||
|
||||
class StableDiffusionPipeline(DiffusionPipeline):
|
||||
r"""
|
||||
Pipeline for text-to-image generation using Stable Diffusion.
|
||||
|
||||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||||
|
||||
Args:
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
||||
text_encoder ([`CLIPTextModel`]):
|
||||
Frozen text-encoder. Stable Diffusion uses the text portion of
|
||||
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
||||
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
||||
tokenizer (`CLIPTokenizer`):
|
||||
Tokenizer of class
|
||||
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
||||
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
||||
scheduler ([`SchedulerMixin`]):
|
||||
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vae: AutoencoderKL,
|
||||
text_encoder: CLIPTextModel,
|
||||
tokenizer: CLIPTokenizer,
|
||||
unet: UNet2DConditionModel,
|
||||
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
||||
safety_checker: StableDiffusionSafetyChecker,
|
||||
feature_extractor: CLIPFeatureExtractor,
|
||||
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]
|
||||
):
|
||||
super().__init__()
|
||||
scheduler = scheduler.set_format("pt")
|
||||
@ -37,10 +57,45 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
||||
feature_extractor=feature_extractor,
|
||||
)
|
||||
|
||||
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
||||
r"""
|
||||
Enable sliced attention computation.
|
||||
|
||||
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
||||
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
||||
|
||||
Args:
|
||||
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
||||
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
||||
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
||||
`attention_head_dim` must be a multiple of `slice_size`.
|
||||
"""
|
||||
if slice_size == "auto":
|
||||
# half the attention head size is usually a good trade-off between
|
||||
# speed and memory
|
||||
slice_size = self.unet.config.attention_head_dim // 2
|
||||
self.unet.set_attention_slice(slice_size)
|
||||
|
||||
def disable_attention_slicing(self):
|
||||
r"""
|
||||
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
||||
back to computing attention in one step.
|
||||
"""
|
||||
# set slice_size = `None` to disable `attention slicing`
|
||||
self.enable_attention_slicing(None)
|
||||
|
||||
def enable_minimal_memory_usage(self):
|
||||
"""Moves only unet to fp16 and to CUDA, while keepping lighter models on CPUs"""
|
||||
self.unet.to(torch.float16).to(torch.device("cuda"))
|
||||
self.enable_attention_slicing(1)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
gc.collect()
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Optional[Union[str, List[str]]] = None,
|
||||
prompt: Union[str, List[str]],
|
||||
height: Optional[int] = 512,
|
||||
width: Optional[int] = 512,
|
||||
num_inference_steps: Optional[int] = 50,
|
||||
@ -48,38 +103,75 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
||||
eta: Optional[float] = 0.0,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
text_embeddings: Optional[torch.FloatTensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`):
|
||||
The prompt or prompts to guide the image generation.
|
||||
height (`int`, *optional*, defaults to 512):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*, defaults to 512):
|
||||
The width in pixels of the generated image.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
guidance_scale (`float`, *optional*, defaults to 7.5):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
eta (`float`, *optional*, defaults to 0.0):
|
||||
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
||||
[`schedulers.DDIMScheduler`], will be ignored for others.
|
||||
generator (`torch.Generator`, *optional*):
|
||||
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
||||
deterministic.
|
||||
latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will ge generated by sampling using the supplied random `generator`.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
||||
plain tuple.
|
||||
|
||||
Returns:
|
||||
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
||||
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
||||
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
||||
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
||||
(nsfw) content, according to the `safety_checker`.
|
||||
"""
|
||||
|
||||
if "torch_device" in kwargs:
|
||||
device = kwargs.pop("torch_device")
|
||||
# device = kwargs.pop("torch_device")
|
||||
warnings.warn(
|
||||
"`torch_device` is deprecated as an input argument to `__call__` and"
|
||||
" will be removed in v0.3.0. Consider using `pipe.to(torch_device)`"
|
||||
" instead."
|
||||
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
|
||||
" Consider using `pipe.to(torch_device)` instead."
|
||||
)
|
||||
|
||||
# Set device as before (to be removed in 0.3.0)
|
||||
if device is None:
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
self.to(device)
|
||||
# if device is None:
|
||||
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
# self.to(device)
|
||||
|
||||
if text_embeddings is None:
|
||||
if isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
||||
)
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
raise ValueError(
|
||||
"`height` and `width` have to be divisible by 8 but are"
|
||||
f" {height} and {width}."
|
||||
)
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||||
|
||||
# get prompt text embeddings
|
||||
text_input = self.tokenizer(
|
||||
@ -89,9 +181,7 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
||||
else:
|
||||
batch_size = text_embeddings.shape[0]
|
||||
text_embeddings = self.text_encoder(text_input.input_ids.to(self.text_encoder.device))[0].to(self.unet.device)
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
@ -99,17 +189,13 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
if do_classifier_free_guidance:
|
||||
# max_length = text_input.input_ids.shape[-1]
|
||||
max_length = 77 # self.tokenizer.model_max_length
|
||||
max_length = text_input.input_ids.shape[-1]
|
||||
uncond_input = self.tokenizer(
|
||||
[""] * batch_size,
|
||||
padding="max_length",
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
||||
)
|
||||
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.text_encoder.device))[0].to(
|
||||
self.unet.device
|
||||
)
|
||||
uncond_embeddings = self.text_encoder(
|
||||
uncond_input.input_ids.to(self.device)
|
||||
)[0]
|
||||
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
@ -117,25 +203,25 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
||||
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
||||
|
||||
# get the initial random noise unless the user supplied it
|
||||
|
||||
# Unlike in other pipelines, latents need to be generated in the target device
|
||||
# for 1-to-1 results reproducibility with the CompVis implementation.
|
||||
# However this currently doesn't work in `mps`.
|
||||
latents_device = "cpu" if self.device.type == "mps" else self.device
|
||||
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
|
||||
if latents is None:
|
||||
latents = torch.randn(
|
||||
latents_shape,
|
||||
generator=generator,
|
||||
device=self.device,
|
||||
device=latents_device,
|
||||
)
|
||||
else:
|
||||
if latents.shape != latents_shape:
|
||||
raise ValueError(
|
||||
f"Unexpected latents shape, got {latents.shape}, expected"
|
||||
f" {latents_shape}"
|
||||
)
|
||||
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
||||
latents = latents.to(self.device)
|
||||
|
||||
# set timesteps
|
||||
accepts_offset = "offset" in set(
|
||||
inspect.signature(self.scheduler.set_timesteps).parameters.keys()
|
||||
)
|
||||
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
||||
extra_set_kwargs = {}
|
||||
if accepts_offset:
|
||||
extra_set_kwargs["offset"] = 1
|
||||
@ -150,18 +236,14 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
accepts_eta = "eta" in set(
|
||||
inspect.signature(self.scheduler.step).parameters.keys()
|
||||
)
|
||||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs["eta"] = eta
|
||||
|
||||
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = (
|
||||
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
)
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
||||
sigma = self.scheduler.sigmas[i]
|
||||
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS
|
||||
@ -169,65 +251,43 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(
|
||||
latent_model_input, t, encoder_hidden_states=text_embeddings
|
||||
)["sample"]
|
||||
latent_model_input.to(self.unet.device), t.to(self.unet.device), encoder_hidden_states=text_embeddings
|
||||
).sample
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (
|
||||
noise_pred_text - noise_pred_uncond
|
||||
)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
||||
latents = self.scheduler.step(
|
||||
noise_pred, i, latents, **extra_step_kwargs
|
||||
)["prev_sample"]
|
||||
noise_pred, i, latents.to(self.unet.device), **extra_step_kwargs
|
||||
).prev_sample
|
||||
else:
|
||||
latents = self.scheduler.step(
|
||||
noise_pred, t, latents, **extra_step_kwargs
|
||||
)["prev_sample"]
|
||||
noise_pred, t.to(self.unet.device), latents.to(self.unet.device), **extra_step_kwargs
|
||||
).prev_sample
|
||||
|
||||
# scale and decode the image latents with vae
|
||||
latents = 1 / 0.18215 * latents
|
||||
image = self.vae.decode(latents).sample
|
||||
image = self.vae.decode(latents.to(self.vae.device)).sample
|
||||
|
||||
image = (image / 2 + 0.5).clamp(0, 1)
|
||||
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
||||
image = image.to(self.vae.device).to(self.vae.device).cpu().permute(0, 2, 3, 1).numpy()
|
||||
|
||||
safety_cheker_input = self.feature_extractor(
|
||||
self.numpy_to_pil(image), return_tensors="pt"
|
||||
).to(self.device)
|
||||
image, has_nsfw_concept = self.safety_checker(
|
||||
images=image, clip_input=safety_cheker_input.pixel_values
|
||||
# run safety checker
|
||||
safety_cheker_input = (
|
||||
self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt")
|
||||
.to(self.vae.device)
|
||||
.to(self.vae.dtype)
|
||||
)
|
||||
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values)
|
||||
|
||||
if output_type == "pil":
|
||||
image = self.numpy_to_pil(image)
|
||||
|
||||
return {"sample": image, "nsfw_content_detected": has_nsfw_concept}
|
||||
if not return_dict:
|
||||
return (image, has_nsfw_concept)
|
||||
|
||||
def embed_text(self, text):
|
||||
"""Helper to embed some text"""
|
||||
with torch.autocast("cuda"):
|
||||
text_input = self.tokenizer(
|
||||
text,
|
||||
padding="max_length",
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
with torch.no_grad():
|
||||
embed = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
||||
return embed
|
||||
|
||||
|
||||
class NoCheck(ModelMixin):
|
||||
"""Can be used in place of safety checker. Use responsibly and at your own risk."""
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.register_parameter(name='asdf', param=torch.nn.Parameter(torch.randn(3)))
|
||||
|
||||
def forward(self, images=None, **kwargs):
|
||||
return images, [False]
|
||||
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
@ -36,14 +36,14 @@ class plugin_info():
|
||||
|
||||
|
||||
if os.path.exists(os.path.join(st.session_state['defaults'].general.GFPGAN_dir, "experiments", "pretrained_models", "GFPGANv1.3.pth")):
|
||||
GFPGAN_available = True
|
||||
server_state["GFPGAN_available"] = True
|
||||
else:
|
||||
GFPGAN_available = False
|
||||
server_state["GFPGAN_available"] = False
|
||||
|
||||
if os.path.exists(os.path.join(st.session_state['defaults'].general.RealESRGAN_dir, "experiments","pretrained_models", f"{st.session_state['defaults'].general.RealESRGAN_model}.pth")):
|
||||
RealESRGAN_available = True
|
||||
server_state["RealESRGAN_available"] = True
|
||||
else:
|
||||
RealESRGAN_available = False
|
||||
server_state["RealESRGAN_available"] = False
|
||||
|
||||
#
|
||||
def txt2img(prompt: str, ddim_steps: int, sampler_name: str, realesrgan_model_name: str,
|
||||
@ -69,21 +69,21 @@ def txt2img(prompt: str, ddim_steps: int, sampler_name: str, realesrgan_model_na
|
||||
#use_RealESRGAN = 8 in toggles
|
||||
|
||||
if sampler_name == 'PLMS':
|
||||
sampler = PLMSSampler(st.session_state["model"])
|
||||
sampler = PLMSSampler(server_state["model"])
|
||||
elif sampler_name == 'DDIM':
|
||||
sampler = DDIMSampler(st.session_state["model"])
|
||||
sampler = DDIMSampler(server_state["model"])
|
||||
elif sampler_name == 'k_dpm_2_a':
|
||||
sampler = KDiffusionSampler(st.session_state["model"],'dpm_2_ancestral')
|
||||
sampler = KDiffusionSampler(server_state["model"],'dpm_2_ancestral')
|
||||
elif sampler_name == 'k_dpm_2':
|
||||
sampler = KDiffusionSampler(st.session_state["model"],'dpm_2')
|
||||
sampler = KDiffusionSampler(server_state["model"],'dpm_2')
|
||||
elif sampler_name == 'k_euler_a':
|
||||
sampler = KDiffusionSampler(st.session_state["model"],'euler_ancestral')
|
||||
sampler = KDiffusionSampler(server_state["model"],'euler_ancestral')
|
||||
elif sampler_name == 'k_euler':
|
||||
sampler = KDiffusionSampler(st.session_state["model"],'euler')
|
||||
sampler = KDiffusionSampler(server_state["model"],'euler')
|
||||
elif sampler_name == 'k_heun':
|
||||
sampler = KDiffusionSampler(st.session_state["model"],'heun')
|
||||
sampler = KDiffusionSampler(server_state["model"],'heun')
|
||||
elif sampler_name == 'k_lms':
|
||||
sampler = KDiffusionSampler(st.session_state["model"],'lms')
|
||||
sampler = KDiffusionSampler(server_state["model"],'lms')
|
||||
else:
|
||||
raise Exception("Unknown sampler: " + sampler_name)
|
||||
|
||||
@ -209,8 +209,8 @@ def layout():
|
||||
#folder then we show a menu to select which model we want to use, otherwise we use the main model for SD
|
||||
custom_models_available()
|
||||
if st.session_state.CustomModel_available:
|
||||
st.session_state.custom_model = st.selectbox("Custom Model:", st.session_state.custom_models,
|
||||
index=st.session_state["custom_models"].index(st.session_state['defaults'].general.default_model),
|
||||
server_state["custom_model"] = st.selectbox("Custom Model:", server_state["custom_models"],
|
||||
index=server_state["custom_models"].index(st.session_state['defaults'].general.default_model),
|
||||
help="Select the model you want to use. This option is only available if you have custom models \
|
||||
on your 'models/custom' folder. The model name that will be shown here is the same as the name\
|
||||
the file for the model has on said folder, it is recommended to give the .ckpt file a name that \
|
||||
@ -243,13 +243,13 @@ def layout():
|
||||
write_info_files = st.checkbox("Write Info file", value=st.session_state['defaults'].txt2img.write_info_files, help="Save a file next to the image with informartion about the generation.")
|
||||
save_as_jpg = st.checkbox("Save samples as jpg", value=st.session_state['defaults'].txt2img.save_as_jpg, help="Saves the images as jpg instead of png.")
|
||||
|
||||
if st.session_state["GFPGAN_available"]:
|
||||
if server_state["GFPGAN_available"]:
|
||||
st.session_state["use_GFPGAN"] = st.checkbox("Use GFPGAN", value=st.session_state['defaults'].txt2img.use_GFPGAN, help="Uses the GFPGAN model to improve faces after the generation.\
|
||||
This greatly improve the quality and consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.")
|
||||
else:
|
||||
st.session_state["use_GFPGAN"] = False
|
||||
|
||||
if st.session_state["RealESRGAN_available"]:
|
||||
if server_state["RealESRGAN_available"]:
|
||||
st.session_state["use_RealESRGAN"] = st.checkbox("Use RealESRGAN", value=st.session_state['defaults'].txt2img.use_RealESRGAN,
|
||||
help="Uses the RealESRGAN model to upscale the images after the generation.\
|
||||
This greatly improve the quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.")
|
||||
|
@ -6,6 +6,9 @@ from sd_utils import *
|
||||
from streamlit import StopException
|
||||
from streamlit.elements import image as STImage
|
||||
|
||||
#streamlit components section
|
||||
from streamlit_server_state import server_state, server_state_lock
|
||||
|
||||
#other imports
|
||||
|
||||
import os
|
||||
@ -19,11 +22,12 @@ from io import BytesIO
|
||||
import imageio
|
||||
from slugify import slugify
|
||||
|
||||
# Temp imports
|
||||
from diffusers import StableDiffusionPipeline
|
||||
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, \
|
||||
PNDMScheduler
|
||||
|
||||
# Temp imports
|
||||
|
||||
# end of imports
|
||||
#---------------------------------------------------------------------------------------------------------------
|
||||
|
||||
@ -201,6 +205,66 @@ def diffuse(
|
||||
return image2
|
||||
|
||||
#
|
||||
@st.experimental_singleton(show_spinner=False, suppress_st_warning=True)
|
||||
def load_diffusers_model(weights_path,torch_device):
|
||||
with server_state_lock["model"]:
|
||||
if "model" in server_state:
|
||||
del server_state["model"]
|
||||
|
||||
with server_state_lock["pipe"]:
|
||||
try:
|
||||
if not "pipe" in st.session_state or st.session_state["weights_path"] != weights_path:
|
||||
if st.session_state["weights_path"] != weights_path:
|
||||
del st.session_state["weights_path"]
|
||||
|
||||
st.session_state["weights_path"] = weights_path
|
||||
server_state["pipe"] = StableDiffusionPipeline.from_pretrained(
|
||||
weights_path,
|
||||
use_local_file=True,
|
||||
use_auth_token=True,
|
||||
torch_dtype=torch.float16 if st.session_state['defaults'].general.use_float16 else None,
|
||||
revision="fp16" if not st.session_state['defaults'].general.no_half else None
|
||||
)
|
||||
|
||||
server_state["pipe"].unet.to(torch_device)
|
||||
server_state["pipe"].vae.to(torch_device)
|
||||
server_state["pipe"].text_encoder.to(torch_device)
|
||||
|
||||
if st.session_state.defaults.general.enable_attention_slicing:
|
||||
server_state["pipe"].enable_attention_slicing()
|
||||
|
||||
if st.session_state.defaults.general.enable_minimal_memory_usage:
|
||||
server_state["pipe"].enable_minimal_memory_usage()
|
||||
|
||||
print("Tx2Vid Model Loaded")
|
||||
else:
|
||||
print("Tx2Vid Model already Loaded")
|
||||
|
||||
except:
|
||||
#del st.session_state["weights_path"]
|
||||
#del server_state["pipe"]
|
||||
|
||||
st.session_state["weights_path"] = weights_path
|
||||
server_state["pipe"] = StableDiffusionPipeline.from_pretrained(
|
||||
weights_path,
|
||||
use_local_file=True,
|
||||
use_auth_token=True,
|
||||
torch_dtype=torch.float16 if st.session_state['defaults'].general.use_float16 else None,
|
||||
revision="fp16" if not st.session_state['defaults'].general.no_half else None
|
||||
)
|
||||
|
||||
server_state["pipe"].unet.to(torch_device)
|
||||
server_state["pipe"].vae.to(torch_device)
|
||||
server_state["pipe"].text_encoder.to(torch_device)
|
||||
|
||||
if st.session_state.defaults.general.enable_attention_slicing:
|
||||
server_state["pipe"].enable_attention_slicing()
|
||||
|
||||
if st.session_state.defaults.general.enable_minimal_memory_usage:
|
||||
server_state["pipe"].enable_minimal_memory_usage()
|
||||
|
||||
print("Tx2Vid Model Loaded")
|
||||
#
|
||||
def txt2vid(
|
||||
# --------------------------------------
|
||||
# args you probably want to change
|
||||
@ -337,59 +401,12 @@ def txt2vid(
|
||||
|
||||
#print (st.session_state["weights_path"] != weights_path)
|
||||
|
||||
try:
|
||||
if not "pipe" in st.session_state or st.session_state["weights_path"] != weights_path:
|
||||
if st.session_state["weights_path"] != weights_path:
|
||||
del st.session_state["weights_path"]
|
||||
load_diffusers_model(weights_path, torch_device)
|
||||
|
||||
st.session_state["weights_path"] = weights_path
|
||||
st.session_state["pipe"] = StableDiffusionPipeline.from_pretrained(
|
||||
weights_path,
|
||||
use_local_file=True,
|
||||
use_auth_token=True,
|
||||
torch_dtype=torch.float16 if st.session_state['defaults'].general.use_float16 else None,
|
||||
revision="fp16" if not st.session_state['defaults'].general.no_half else None
|
||||
)
|
||||
server_state["pipe"].scheduler = SCHEDULERS[scheduler]
|
||||
|
||||
st.session_state["pipe"].unet.to(torch_device)
|
||||
st.session_state["pipe"].vae.to(torch_device)
|
||||
st.session_state["pipe"].text_encoder.to(torch_device)
|
||||
|
||||
if st.session_state.defaults.general.enable_attention_slicing:
|
||||
st.session_state["pipe"].enable_attention_slicing()
|
||||
if st.session_state.defaults.general.enable_minimal_memory_usage:
|
||||
st.session_state["pipe"].enable_minimal_memory_usage()
|
||||
|
||||
print("Tx2Vid Model Loaded")
|
||||
else:
|
||||
print("Tx2Vid Model already Loaded")
|
||||
|
||||
except:
|
||||
#del st.session_state["weights_path"]
|
||||
#del st.session_state["pipe"]
|
||||
|
||||
st.session_state["weights_path"] = weights_path
|
||||
st.session_state["pipe"] = StableDiffusionPipeline.from_pretrained(
|
||||
weights_path,
|
||||
use_local_file=True,
|
||||
use_auth_token=True,
|
||||
torch_dtype=torch.float16 if st.session_state['defaults'].general.use_float16 else None,
|
||||
revision="fp16" if not st.session_state['defaults'].general.no_half else None
|
||||
)
|
||||
|
||||
st.session_state["pipe"].unet.to(torch_device)
|
||||
st.session_state["pipe"].vae.to(torch_device)
|
||||
st.session_state["pipe"].text_encoder.to(torch_device)
|
||||
|
||||
if st.session_state.defaults.general.enable_attention_slicing:
|
||||
st.session_state["pipe"].enable_attention_slicing()
|
||||
|
||||
if st.session_state.defaults.general.enable_minimal_memory_usage:
|
||||
st.session_state["pipe"].enable_minimal_memory_usage()
|
||||
|
||||
print("Tx2Vid Model Loaded")
|
||||
|
||||
st.session_state["pipe"].scheduler = SCHEDULERS[scheduler]
|
||||
server_state["pipe"].use_multiprocessing_for_evaluation = False
|
||||
server_state["pipe"].use_multiprocessed_decoding = False
|
||||
|
||||
if do_loop:
|
||||
prompts = str([prompts, prompts])
|
||||
@ -399,8 +416,8 @@ def txt2vid(
|
||||
#seeds.append(first_seed)
|
||||
|
||||
# get the conditional text embeddings based on the prompt
|
||||
text_input = st.session_state["pipe"].tokenizer(prompts, padding="max_length", max_length=st.session_state["pipe"].tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
||||
cond_embeddings = st.session_state["pipe"].text_encoder(text_input.input_ids.to(torch_device))[0] # shape [1, 77, 768]
|
||||
text_input = server_state["pipe"].tokenizer(prompts, padding="max_length", max_length=server_state["pipe"].tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
||||
cond_embeddings = server_state["pipe"].text_encoder(text_input.input_ids.to(torch_device))[0] # shape [1, 77, 768]
|
||||
|
||||
#
|
||||
if st.session_state.defaults.general.use_sd_concepts_library:
|
||||
@ -434,7 +451,7 @@ def txt2vid(
|
||||
load_learned_embed_in_clip(f"{os.path.join(embedding_path, files)}", text_encoder, tokenizer, f"<{prompt_tokens[0]}>")
|
||||
|
||||
# sample a source
|
||||
init1 = torch.randn((1, st.session_state["pipe"].unet.in_channels, height // 8, width // 8), device=torch_device)
|
||||
init1 = torch.randn((1, server_state["pipe"].unet.in_channels, height // 8, width // 8), device=torch_device)
|
||||
|
||||
|
||||
# iterate the loop
|
||||
@ -451,7 +468,7 @@ def txt2vid(
|
||||
st.session_state["current_frame"] = frame_index
|
||||
|
||||
# sample the destination
|
||||
init2 = torch.randn((1, st.session_state["pipe"].unet.in_channels, height // 8, width // 8), device=torch_device)
|
||||
init2 = torch.randn((1, server_state["pipe"].unet.in_channels, height // 8, width // 8), device=torch_device)
|
||||
|
||||
for i, t in enumerate(np.linspace(0, 1, num_steps)):
|
||||
start = timeit.default_timer()
|
||||
@ -465,9 +482,9 @@ def txt2vid(
|
||||
init = slerp(gpu, float(t), init1, init2)
|
||||
|
||||
with autocast("cuda"):
|
||||
image = diffuse(st.session_state["pipe"], cond_embeddings, init, num_inference_steps, cfg_scale, eta)
|
||||
image = diffuse(server_state["pipe"], cond_embeddings, init, num_inference_steps, cfg_scale, eta)
|
||||
|
||||
if st.session_state["save_individual_images"] and not st.session_state["use_GFPGAN"] and not st.session_state["use_RealESRGAN"]:
|
||||
if st.session_state["save_individual_images"] and not server_state["use_GFPGAN"] and not st.session_state["use_RealESRGAN"]:
|
||||
#im = Image.fromarray(image)
|
||||
outpath = os.path.join(full_path, 'frame%06d.png' % frame_index)
|
||||
image.save(outpath, quality=quality)
|
||||
@ -481,13 +498,13 @@ def txt2vid(
|
||||
|
||||
#
|
||||
#try:
|
||||
#if st.session_state["use_GFPGAN"] and st.session_state["GFPGAN"] is not None and not st.session_state["use_RealESRGAN"]:
|
||||
if st.session_state["use_GFPGAN"] and st.session_state["GFPGAN"] is not None:
|
||||
#if server_state["use_GFPGAN"] and server_state["GFPGAN"] is not None and not st.session_state["use_RealESRGAN"]:
|
||||
if server_state["use_GFPGAN"] and server_state["GFPGAN"] is not None:
|
||||
#print("Running GFPGAN on image ...")
|
||||
st.session_state["progress_bar_text"].text("Running GFPGAN on image ...")
|
||||
#skip_save = True # #287 >_>
|
||||
torch_gc()
|
||||
cropped_faces, restored_faces, restored_img = st.session_state["GFPGAN"].enhance(np.array(image)[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
|
||||
cropped_faces, restored_faces, restored_img = server_state["GFPGAN"].enhance(np.array(image)[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
|
||||
gfpgan_sample = restored_img[:,:,::-1]
|
||||
gfpgan_image = Image.fromarray(gfpgan_sample)
|
||||
|
||||
@ -698,9 +715,9 @@ def layout():
|
||||
st.session_state["save_as_jpg"] = st.checkbox("Save samples as jpg", value=st.session_state['defaults'].txt2vid.save_as_jpg, help="Saves the images as jpg instead of png.")
|
||||
|
||||
if GFPGAN_available:
|
||||
st.session_state["use_GFPGAN"] = st.checkbox("Use GFPGAN", value=st.session_state['defaults'].txt2vid.use_GFPGAN, help="Uses the GFPGAN model to improve faces after the generation. This greatly improve the quality and consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.")
|
||||
server_state["use_GFPGAN"] = st.checkbox("Use GFPGAN", value=st.session_state['defaults'].txt2vid.use_GFPGAN, help="Uses the GFPGAN model to improve faces after the generation. This greatly improve the quality and consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.")
|
||||
else:
|
||||
st.session_state["use_GFPGAN"] = False
|
||||
server_state["use_GFPGAN"] = False
|
||||
|
||||
if RealESRGAN_available:
|
||||
st.session_state["use_RealESRGAN"] = st.checkbox("Use RealESRGAN", value=st.session_state['defaults'].txt2vid.use_RealESRGAN,
|
||||
@ -726,16 +743,16 @@ def layout():
|
||||
if generate_button:
|
||||
#print("Loading models")
|
||||
# load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry.
|
||||
#load_models(False, st.session_state["use_GFPGAN"], True, st.session_state["RealESRGAN_model"])
|
||||
#load_models(False, server_state["use_GFPGAN"], True, st.session_state["RealESRGAN_model"])
|
||||
|
||||
if st.session_state["use_GFPGAN"]:
|
||||
if server_state["use_GFPGAN"]:
|
||||
if "GFPGAN" in st.session_state:
|
||||
print("GFPGAN already loaded")
|
||||
else:
|
||||
# Load GFPGAN
|
||||
if os.path.exists(st.session_state["defaults"].general.GFPGAN_dir):
|
||||
try:
|
||||
st.session_state["GFPGAN"] = load_GFPGAN()
|
||||
server_state["GFPGAN"] = load_GFPGAN()
|
||||
print("Loaded GFPGAN")
|
||||
except Exception:
|
||||
import traceback
|
||||
@ -743,9 +760,9 @@ def layout():
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
else:
|
||||
if "GFPGAN" in st.session_state:
|
||||
del st.session_state["GFPGAN"]
|
||||
del server_state["GFPGAN"]
|
||||
|
||||
#try:
|
||||
try:
|
||||
# run video generation
|
||||
video, seed, info, stats = txt2vid(prompts=prompt, gpu=st.session_state["defaults"].general.gpu,
|
||||
num_steps=st.session_state.sampling_steps, max_frames=int(st.session_state.max_frames),
|
||||
@ -801,7 +818,7 @@ def layout():
|
||||
|
||||
#st.session_state['historyTab'] = [history_tab,col1,col2,col3,PlaceHolder,col1_cont,col2_cont,col3_cont]
|
||||
|
||||
#except (StopException, KeyError):
|
||||
#print(f"Received Streamlit StopException")
|
||||
except (StopException, KeyError):
|
||||
print(f"Received Streamlit StopException")
|
||||
|
||||
|
||||
|
@ -7,6 +7,7 @@ import streamlit_nested_layout
|
||||
|
||||
#streamlit components section
|
||||
from st_on_hover_tabs import on_hover_tabs
|
||||
from streamlit_server_state import server_state, server_state_lock
|
||||
|
||||
#other imports
|
||||
|
||||
@ -41,6 +42,7 @@ except:
|
||||
|
||||
# remove some annoying deprecation warnings that show every now and then.
|
||||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
# this should force GFPGAN and RealESRGAN onto the selected gpu as well
|
||||
#os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
|
||||
@ -70,15 +72,17 @@ def layout():
|
||||
load_css(True, 'frontend/css/streamlit.main.css')
|
||||
|
||||
# check if the models exist on their respective folders
|
||||
with server_state_lock["GFPGAN_available"]:
|
||||
if os.path.exists(os.path.join(st.session_state["defaults"].general.GFPGAN_dir, "experiments", "pretrained_models", "GFPGANv1.3.pth")):
|
||||
st.session_state["GFPGAN_available"] = True
|
||||
server_state["GFPGAN_available"] = True
|
||||
else:
|
||||
st.session_state["GFPGAN_available"] = False
|
||||
server_state["GFPGAN_available"] = False
|
||||
|
||||
with server_state_lock["RealESRGAN_available"]:
|
||||
if os.path.exists(os.path.join(st.session_state["defaults"].general.RealESRGAN_dir, "experiments","pretrained_models", f"{st.session_state['defaults'].general.RealESRGAN_model}.pth")):
|
||||
st.session_state["RealESRGAN_available"] = True
|
||||
server_state["RealESRGAN_available"] = True
|
||||
else:
|
||||
st.session_state["RealESRGAN_available"] = False
|
||||
server_state["RealESRGAN_available"] = False
|
||||
|
||||
## Allow for custom models to be used instead of the default one,
|
||||
## an example would be Waifu-Diffusion or any other fine tune of stable diffusion
|
||||
|
Loading…
Reference in New Issue
Block a user