mirror of
https://github.com/Sygil-Dev/sygil-webui.git
synced 2024-12-14 22:13:41 +03:00
* Add mask_restore option to give users the option to restore images based on mask, fixing #665. Before commitc73fdd78
(Implement masking during sampling to improve blending, #308) image mask was applied after sampling, resulting in masked parts that are not regenerated to actually stay the same. Sincec73fdd78
the masked img2img will change the whole image, even in masked areas. It gives better looking results at first glance, but will result in image degredation when applied a few times. See issue #665. In the workflow of using repeated masked img2img, users may want to use this options to keep the parts of image they actually want to keep without image degradation. A final masked img2img or whole image img2img with mask_restore disabled will give the better blending of "Implement masking during sampling". * revert changes ofa7be43ba
in change_image_editor_mode * fix ui_functions.change_image_editor_mode by adding gr.update to the end of the list it returns * revert inserted newlines and whitespaces to match format of previous code * improve caption of new option mask_restore "Only modify regenerated parts of image" * fix ui_functions.change_image_editor_mode by adding gr.update to the end of the list it returns an old copy of the function exists in webui.py, this superflous function mistakenly was changed by the earlier commitb6a9e16b
* remove unused functions that are near duplicates of functions in ui_functions.py
This commit is contained in:
parent
c7d6855bae
commit
f6aa2c64eb
@ -200,9 +200,13 @@ def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x, imgproc=lambda
|
||||
value=img2img_mask_modes[img2img_defaults['mask_mode']],
|
||||
visible=True)
|
||||
|
||||
img2img_mask_blur_strength = gr.Slider(minimum=1, maximum=10, step=1,
|
||||
img2img_mask_restore = gr.Checkbox(label="Only modify regenerated parts of image",
|
||||
value=img2img_defaults['mask_restore'],
|
||||
visible=True)
|
||||
|
||||
img2img_mask_blur_strength = gr.Slider(minimum=1, maximum=100, step=1,
|
||||
label="How much blurry should the mask be? (to avoid hard edges)",
|
||||
value=3, visible=False)
|
||||
value=3, visible=True)
|
||||
|
||||
img2img_resize = gr.Radio(label="Resize mode",
|
||||
choices=["Just resize", "Crop and resize",
|
||||
@ -294,7 +298,7 @@ def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x, imgproc=lambda
|
||||
img2img_height
|
||||
],
|
||||
[img2img_image_editor, img2img_image_mask, img2img_btn_editor, img2img_btn_mask,
|
||||
img2img_painterro_btn, img2img_mask, img2img_mask_blur_strength]
|
||||
img2img_painterro_btn, img2img_mask, img2img_mask_blur_strength, img2img_mask_restore]
|
||||
)
|
||||
|
||||
# img2img_image_editor_mode.change(
|
||||
@ -335,8 +339,8 @@ def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x, imgproc=lambda
|
||||
)
|
||||
|
||||
img2img_func = img2img
|
||||
img2img_inputs = [img2img_prompt, img2img_image_editor_mode, img2img_mask,
|
||||
img2img_mask_blur_strength, img2img_steps, img2img_sampling, img2img_toggles,
|
||||
img2img_inputs = [img2img_prompt, img2img_image_editor_mode, img2img_mask, img2img_mask_blur_strength,
|
||||
img2img_mask_restore, img2img_steps, img2img_sampling, img2img_toggles,
|
||||
img2img_realesrgan_model_name, img2img_batch_count, img2img_cfg,
|
||||
img2img_denoising, img2img_seed, img2img_height, img2img_width, img2img_resize,
|
||||
img2img_image_editor, img2img_image_mask, img2img_embeddings]
|
||||
|
@ -9,10 +9,10 @@ import re
|
||||
def change_image_editor_mode(choice, cropped_image, masked_image, resize_mode, width, height):
|
||||
if choice == "Mask":
|
||||
update_image_result = update_image_mask(cropped_image, resize_mode, width, height)
|
||||
return [gr.update(visible=False), update_image_result, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)]
|
||||
return [gr.update(visible=False), update_image_result, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)]
|
||||
|
||||
update_image_result = update_image_mask(masked_image["image"] if masked_image is not None else None, resize_mode, width, height)
|
||||
return [update_image_result, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)]
|
||||
return [update_image_result, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)]
|
||||
|
||||
def update_image_mask(cropped_image, resize_mode, width, height):
|
||||
resized_cropped_image = resize_image(resize_mode, cropped_image, width, height) if cropped_image else None
|
||||
|
@ -790,7 +790,7 @@ def process_images(
|
||||
outpath, func_init, func_sample, prompt, seed, sampler_name, skip_grid, skip_save, batch_size,
|
||||
n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN, use_RealESRGAN, realesrgan_model_name,
|
||||
fp, ddim_eta=0.0, do_not_save_grid=False, normalize_prompt_weights=True, init_img=None, init_mask=None,
|
||||
keep_mask=False, mask_blur_strength=3, denoising_strength=0.75, resize_mode=None, uses_loopback=False,
|
||||
keep_mask=False, mask_blur_strength=3, mask_restore=False, denoising_strength=0.75, resize_mode=None, uses_loopback=False,
|
||||
uses_random_seed_loopback=False, sort_samples=True, write_info_files=True, write_sample_info_to_log_file=False, jpg_sample=False,
|
||||
variant_amount=0.0, variant_seed=None,imgProcessorTask=False, job_info: JobInfo = None):
|
||||
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
||||
@ -1045,6 +1045,26 @@ skip_save, skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size,
|
||||
if imgProcessorTask == True:
|
||||
output_images.append(image)
|
||||
|
||||
if mask_restore and init_mask:
|
||||
#init_mask = init_mask if keep_mask else ImageOps.invert(init_mask)
|
||||
init_mask = init_mask.filter(ImageFilter.GaussianBlur(mask_blur_strength))
|
||||
init_mask = init_mask.convert('L')
|
||||
init_img = init_img.convert('RGB')
|
||||
image = image.convert('RGB')
|
||||
|
||||
if use_RealESRGAN and RealESRGAN is not None:
|
||||
if RealESRGAN.model.name != realesrgan_model_name:
|
||||
try_loading_RealESRGAN(realesrgan_model_name)
|
||||
output, img_mode = RealESRGAN.enhance(np.array(init_img, dtype=np.uint8))
|
||||
init_img = Image.fromarray(output)
|
||||
init_img = init_img.convert('RGB')
|
||||
|
||||
output, img_mode = RealESRGAN.enhance(np.array(init_mask, dtype=np.uint8))
|
||||
init_mask = Image.fromarray(output)
|
||||
init_mask = init_mask.convert('L')
|
||||
|
||||
image = Image.composite(init_img, image, init_mask)
|
||||
|
||||
if not skip_save:
|
||||
save_sample(image, sample_path_i, filename, jpg_sample, write_info_files, write_sample_info_to_log_file, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
|
||||
skip_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, False)
|
||||
@ -1259,7 +1279,7 @@ def blurArr(a,r=8):
|
||||
|
||||
|
||||
|
||||
def img2img(prompt: str, image_editor_mode: str, mask_mode: str, mask_blur_strength: int, ddim_steps: int, sampler_name: str,
|
||||
def img2img(prompt: str, image_editor_mode: str, mask_mode: str, mask_blur_strength: int, mask_restore: bool, ddim_steps: int, sampler_name: str,
|
||||
toggles: List[int], realesrgan_model_name: str, n_iter: int, cfg_scale: float, denoising_strength: float,
|
||||
seed: int, height: int, width: int, resize_mode: int, init_info: any = None, init_info_mask: any = None, fp = None, job_info: JobInfo = None):
|
||||
# print([prompt, image_editor_mode, init_info, init_info_mask, mask_mode,
|
||||
@ -1504,6 +1524,7 @@ def img2img(prompt: str, image_editor_mode: str, mask_mode: str, mask_blur_stren
|
||||
init_mask=init_mask,
|
||||
keep_mask=keep_mask,
|
||||
mask_blur_strength=mask_blur_strength,
|
||||
mask_restore=mask_restore,
|
||||
denoising_strength=denoising_strength,
|
||||
resize_mode=resize_mode,
|
||||
uses_loopback=loopback,
|
||||
@ -1574,6 +1595,7 @@ def img2img(prompt: str, image_editor_mode: str, mask_mode: str, mask_blur_stren
|
||||
keep_mask=keep_mask,
|
||||
mask_blur_strength=mask_blur_strength,
|
||||
denoising_strength=denoising_strength,
|
||||
mask_restore=mask_restore,
|
||||
resize_mode=resize_mode,
|
||||
uses_loopback=loopback,
|
||||
sort_samples=sort_samples,
|
||||
@ -1722,6 +1744,7 @@ def imgproc(image,image_batch,imgproc_prompt,imgproc_toggles, imgproc_upscale_to
|
||||
init_img = result
|
||||
init_mask = None
|
||||
keep_mask = False
|
||||
mask_restore = False
|
||||
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
||||
|
||||
def init():
|
||||
@ -1868,6 +1891,7 @@ def imgproc(image,image_batch,imgproc_prompt,imgproc_toggles, imgproc_upscale_to
|
||||
keep_mask=False,
|
||||
mask_blur_strength=None,
|
||||
denoising_strength=denoising_strength,
|
||||
mask_restore=mask_restore,
|
||||
resize_mode=resize_mode,
|
||||
uses_loopback=False,
|
||||
sort_samples=True,
|
||||
@ -2186,6 +2210,7 @@ img2img_defaults = {
|
||||
'cfg_scale': 5.0,
|
||||
'denoising_strength': 0.75,
|
||||
'mask_mode': 0,
|
||||
'mask_restore': False,
|
||||
'resize_mode': 0,
|
||||
'seed': '',
|
||||
'height': 512,
|
||||
@ -2199,24 +2224,6 @@ if 'img2img' in user_defaults:
|
||||
img2img_toggle_defaults = [img2img_toggles[i] for i in img2img_defaults['toggles']]
|
||||
img2img_image_mode = 'sketch'
|
||||
|
||||
def change_image_editor_mode(choice, cropped_image, resize_mode, width, height):
|
||||
if choice == "Mask":
|
||||
return [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)]
|
||||
return [gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)]
|
||||
|
||||
def update_image_mask(cropped_image, resize_mode, width, height):
|
||||
resized_cropped_image = resize_image(resize_mode, cropped_image, width, height) if cropped_image else None
|
||||
return gr.update(value=resized_cropped_image)
|
||||
|
||||
|
||||
|
||||
def copy_img_to_upscale_esrgan(img):
|
||||
update = gr.update(selected='realesrgan_tab')
|
||||
image_data = re.sub('^data:image/.+;base64,', '', img)
|
||||
processed_image = Image.open(BytesIO(base64.b64decode(image_data)))
|
||||
return {'realesrgan_source': processed_image, 'tabs': update}
|
||||
|
||||
|
||||
help_text = """
|
||||
## Mask/Crop
|
||||
* The masking/cropping is very temperamental.
|
||||
|
@ -913,7 +913,7 @@ def process_images(
|
||||
outpath, func_init, func_sample, prompt, seed, sampler_name, save_grid, batch_size,
|
||||
n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN, use_RealESRGAN, realesrgan_model_name,
|
||||
fp=None, ddim_eta=0.0, normalize_prompt_weights=True, init_img=None, init_mask=None,
|
||||
keep_mask=False, mask_blur_strength=3, denoising_strength=0.75, resize_mode=None, uses_loopback=False,
|
||||
keep_mask=False, mask_blur_strength=3, mask_restore=False, denoising_strength=0.75, resize_mode=None, uses_loopback=False,
|
||||
uses_random_seed_loopback=False, sort_samples=True, write_info_files=True, jpg_sample=False,
|
||||
variant_amount=0.0, variant_seed=None, save_individual_images: bool = True):
|
||||
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
||||
@ -1156,7 +1156,29 @@ def process_images(
|
||||
|
||||
if simple_templating:
|
||||
grid_captions.append( captions[i] + "\ngfpgan_esrgan" )
|
||||
|
||||
if mask_restore and init_mask:
|
||||
#init_mask = init_mask if keep_mask else ImageOps.invert(init_mask)
|
||||
init_mask = init_mask.filter(ImageFilter.GaussianBlur(mask_blur_strength))
|
||||
init_mask = init_mask.convert('L')
|
||||
init_img = init_img.convert('RGB')
|
||||
image = image.convert('RGB')
|
||||
|
||||
if use_RealESRGAN and st.session_state["RealESRGAN"] is not None:
|
||||
if st.session_state["RealESRGAN"].model.name != realesrgan_model_name:
|
||||
#try_loading_RealESRGAN(realesrgan_model_name)
|
||||
load_models(use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, RealESRGAN_model=realesrgan_model_name)
|
||||
|
||||
output, img_mode = st.session_state["RealESRGAN"].enhance(np.array(init_img, dtype=np.uint8))
|
||||
init_img = Image.fromarray(output)
|
||||
init_img = init_img.convert('RGB')
|
||||
|
||||
output, img_mode = st.session_state["RealESRGAN"].enhance(np.array(init_mask, dtype=np.uint8))
|
||||
init_mask = Image.fromarray(output)
|
||||
init_mask = init_mask.convert('L')
|
||||
|
||||
image = Image.composite(init_img, image, init_mask)
|
||||
|
||||
if save_individual_images:
|
||||
save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
|
||||
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback,
|
||||
@ -1257,7 +1279,7 @@ def resize_image(resize_mode, im, width, height):
|
||||
return res
|
||||
|
||||
def img2img(prompt: str = '', init_info: any = None, init_info_mask: any = None, mask_mode: int = 0, mask_blur_strength: int = 3,
|
||||
ddim_steps: int = 50, sampler_name: str = 'DDIM',
|
||||
mask_restore: bool = False, ddim_steps: int = 50, sampler_name: str = 'DDIM',
|
||||
n_iter: int = 1, cfg_scale: float = 7.5, denoising_strength: float = 0.8,
|
||||
seed: int = -1, height: int = 512, width: int = 512, resize_mode: int = 0, fp = None,
|
||||
variant_amount: float = None, variant_seed: int = None, ddim_eta:float = 0.0,
|
||||
@ -1426,6 +1448,7 @@ def img2img(prompt: str = '', init_info: any = None, init_info_mask: any = None,
|
||||
init_mask=init_mask,
|
||||
keep_mask=keep_mask,
|
||||
mask_blur_strength=mask_blur_strength,
|
||||
mask_restore=mask_restore,
|
||||
denoising_strength=denoising_strength,
|
||||
resize_mode=resize_mode,
|
||||
uses_loopback=loopback,
|
||||
@ -1486,8 +1509,9 @@ def img2img(prompt: str = '', init_info: any = None, init_info_mask: any = None,
|
||||
init_img=init_img,
|
||||
init_mask=init_mask,
|
||||
keep_mask=keep_mask,
|
||||
mask_blur_strength=2,
|
||||
mask_blur_strength=mask_blur_strength,
|
||||
denoising_strength=denoising_strength,
|
||||
mask_restore=mask_restore,
|
||||
resize_mode=resize_mode,
|
||||
uses_loopback=loopback,
|
||||
sort_samples=group_by_prompt,
|
||||
|
Loading…
Reference in New Issue
Block a user