import gradio as gr from frontend.css_and_js import css, js, call_JS, js_parse_prompt, js_copy_txt2img_output import frontend.ui_functions as uifn def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x,imgproc=lambda x: x, txt2img_defaults={}, RealESRGAN=True, GFPGAN=True,LDSR=True, txt2img_toggles={}, txt2img_toggle_defaults='k_euler', show_embeddings=False, img2img_defaults={}, img2img_toggles={}, img2img_toggle_defaults={}, sample_img2img=None, img2img_mask_modes=None, img2img_resize_modes=None, imgproc_defaults={},imgproc_mode_toggles={},user_defaults={}, run_GFPGAN=lambda x: x, run_RealESRGAN=lambda x: x): with gr.Blocks(css=css(opt), analytics_enabled=False, title="Stable Diffusion WebUI") as demo: with gr.Tabs(elem_id='tabss') as tabs: with gr.TabItem("Text-to-Image", id='txt2img_tab'): with gr.Row(elem_id="prompt_row"): txt2img_prompt = gr.Textbox(label="Prompt", elem_id='prompt_input', placeholder="A corgi wearing a top hat as an oil painting.", lines=1, max_lines=1 if txt2img_defaults['submit_on_enter'] == 'Yes' else 25, value=txt2img_defaults['prompt'], show_label=False) txt2img_btn = gr.Button("Generate", elem_id="generate", variant="primary") with gr.Row(elem_id='body').style(equal_height=False): with gr.Column(): txt2img_width = gr.Slider(minimum=64, maximum=1024, step=64, label="Width", value=txt2img_defaults["width"]) txt2img_height = gr.Slider(minimum=64, maximum=1024, step=64, label="Height", value=txt2img_defaults["height"]) txt2img_cfg = gr.Slider(minimum=-40.0, maximum=30.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=txt2img_defaults['cfg_scale'], elem_id='cfg_slider') txt2img_seed = gr.Textbox(label="Seed (blank to randomize)", lines=1, max_lines=1, value=txt2img_defaults["seed"]) txt2img_batch_count = gr.Slider(minimum=1, maximum=50, step=1, label='Number of images to generate', value=txt2img_defaults['n_iter']) txt2img_dimensions_info_text_box = gr.Textbox(label="Aspect ratio (4:3 = 1.333 | 16:9 = 1.777 | 21:9 = 2.333)") with gr.Column(): with gr.Box(): output_txt2img_gallery = gr.Gallery(label="Images", elem_id="txt2img_gallery_output").style(grid=[4, 4]) gr.Markdown("Select an image from the gallery, then click one of the buttons below to perform an action.") with gr.Row(elem_id='txt2img_actions_row'): gr.Button("Copy to clipboard").click(fn=None, inputs=output_txt2img_gallery, outputs=[], #_js=js_copy_to_clipboard( 'txt2img_gallery_output') ) output_txt2img_copy_to_input_btn = gr.Button("Push to img2img") output_txt2img_to_imglab = gr.Button("Send to Lab",visible=True) output_txt2img_params = gr.Highlightedtext(label="Generation parameters", interactive=False, elem_id='highlight') with gr.Group(): with gr.Row(elem_id='txt2img_output_row'): output_txt2img_copy_params = gr.Button("Copy full parameters").click( inputs=[output_txt2img_params], outputs=[], _js=js_copy_txt2img_output, fn=None, show_progress=False) output_txt2img_seed = gr.Number(label='Seed', interactive=False, visible=False) output_txt2img_copy_seed = gr.Button("Copy only seed").click( inputs=[output_txt2img_seed], outputs=[], _js='(x) => navigator.clipboard.writeText(x)', fn=None, show_progress=False) output_txt2img_stats = gr.HTML(label='Stats') with gr.Column(): txt2img_steps = gr.Slider(minimum=1, maximum=250, step=1, label="Sampling Steps", value=txt2img_defaults['ddim_steps']) txt2img_sampling = gr.Dropdown(label='Sampling method (k_lms is default k-diffusion sampler)', choices=["DDIM", "PLMS", 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms'], value=txt2img_defaults['sampler_name']) with gr.Tabs(): with gr.TabItem('Simple'): txt2img_submit_on_enter = gr.Radio(['Yes', 'No'], label="Submit on enter? (no means multiline)", value=txt2img_defaults['submit_on_enter'], interactive=True, elem_id='submit_on_enter') txt2img_submit_on_enter.change( lambda x: gr.update(max_lines=1 if x == 'Yes' else 25), txt2img_submit_on_enter, txt2img_prompt) with gr.TabItem('Advanced'): txt2img_toggles = gr.CheckboxGroup(label='', choices=txt2img_toggles, value=txt2img_toggle_defaults, type="index") txt2img_batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=txt2img_defaults['batch_size']) txt2img_realesrgan_model_name = gr.Dropdown(label='RealESRGAN model', choices=['RealESRGAN_x4plus', 'RealESRGAN_x4plus_anime_6B'], value='RealESRGAN_x4plus', visible=False)#RealESRGAN is not None # invisible until removed) # TODO: Feels like I shouldnt slot it in here. txt2img_ddim_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=txt2img_defaults['ddim_eta'], visible=False) txt2img_variant_amount = gr.Slider(minimum=0.0, maximum=1.0, label='Variation Amount', value=txt2img_defaults['variant_amount']) txt2img_variant_seed = gr.Textbox(label="Variant Seed (blank to randomize)", lines=1, max_lines=1, value=txt2img_defaults["variant_seed"]) txt2img_embeddings = gr.File(label="Embeddings file for textual inversion", visible=show_embeddings) txt2img_btn.click( txt2img, [txt2img_prompt, txt2img_steps, txt2img_sampling, txt2img_toggles, txt2img_realesrgan_model_name, txt2img_ddim_eta, txt2img_batch_count, txt2img_batch_size, txt2img_cfg, txt2img_seed, txt2img_height, txt2img_width, txt2img_embeddings, txt2img_variant_amount, txt2img_variant_seed], [output_txt2img_gallery, output_txt2img_seed, output_txt2img_params, output_txt2img_stats] ) txt2img_prompt.submit( txt2img, [txt2img_prompt, txt2img_steps, txt2img_sampling, txt2img_toggles, txt2img_realesrgan_model_name, txt2img_ddim_eta, txt2img_batch_count, txt2img_batch_size, txt2img_cfg, txt2img_seed, txt2img_height, txt2img_width, txt2img_embeddings, txt2img_variant_amount, txt2img_variant_seed], [output_txt2img_gallery, output_txt2img_seed, output_txt2img_params, output_txt2img_stats] ) # txt2img_width.change(fn=uifn.update_dimensions_info, inputs=[txt2img_width, txt2img_height], outputs=txt2img_dimensions_info_text_box) # txt2img_height.change(fn=uifn.update_dimensions_info, inputs=[txt2img_width, txt2img_height], outputs=txt2img_dimensions_info_text_box) live_prompt_params = [txt2img_prompt, txt2img_width, txt2img_height, txt2img_steps, txt2img_seed, txt2img_batch_count, txt2img_cfg] txt2img_prompt.change( fn=None, inputs=live_prompt_params, outputs=live_prompt_params, _js=js_parse_prompt ) with gr.TabItem("Image-to-Image Unified", id="img2img_tab"): with gr.Row(elem_id="prompt_row"): img2img_prompt = gr.Textbox(label="Prompt", elem_id='img2img_prompt_input', placeholder="A fantasy landscape, trending on artstation.", lines=1, max_lines=1 if txt2img_defaults['submit_on_enter'] == 'Yes' else 25, value=img2img_defaults['prompt'], show_label=False).style() img2img_btn_mask = gr.Button("Generate", variant="primary", visible=False, elem_id="img2img_mask_btn") img2img_btn_editor = gr.Button("Generate", variant="primary", elem_id="img2img_edit_btn") with gr.Row().style(equal_height=False): with gr.Column(): gr.Markdown('#### Img2Img Input') img2img_image_editor = gr.Image(value=sample_img2img, source="upload", interactive=True, type="pil", tool="select", elem_id="img2img_editor", image_mode="RGBA") img2img_image_mask = gr.Image(value=sample_img2img, source="upload", interactive=True, type="pil", tool="sketch", visible=False, elem_id="img2img_mask") with gr.Tabs(): with gr.TabItem("Editor Options"): with gr.Column(): img2img_image_editor_mode = gr.Radio(choices=["Mask", "Crop", "Uncrop"], label="Image Editor Mode", value="Crop", elem_id='edit_mode_select') img2img_mask = gr.Radio(choices=["Keep masked area", "Regenerate only masked area"], label="Mask Mode", type="index", value=img2img_mask_modes[img2img_defaults['mask_mode']], visible=False) img2img_mask_blur_strength = gr.Slider(minimum=1, maximum=10, step=1, label="How much blurry should the mask be? (to avoid hard edges)", value=3, visible=False) img2img_resize = gr.Radio(label="Resize mode", choices=["Just resize"], type="index", value=img2img_resize_modes[img2img_defaults['resize_mode']]) img2img_painterro_btn = gr.Button("Advanced Editor") with gr.TabItem("Hints"): img2img_help = gr.Markdown(visible=False, value=uifn.help_text) with gr.Column(): gr.Markdown('#### Img2Img Results') output_img2img_gallery = gr.Gallery(label="Images", elem_id="img2img_gallery_output").style(grid=[4,4,4]) with gr.Tabs(): with gr.TabItem("Generated image actions", id="img2img_actions_tab"): gr.Markdown("Select an image, then press one of the buttons below") with gr.Row(): output_img2img_copy_to_clipboard_btn = gr.Button("Copy to clipboard") output_img2img_copy_to_input_btn = gr.Button("Push to img2img input") output_img2img_copy_to_mask_btn = gr.Button("Push to img2img input mask") gr.Markdown("Warning: This will clear your current image and mask settings!") with gr.TabItem("Output info", id="img2img_output_info_tab"): output_img2img_params = gr.Textbox(label="Generation parameters") with gr.Row(): output_img2img_copy_params = gr.Button("Copy full parameters").click( inputs=output_img2img_params, outputs=[], _js='(x) => {navigator.clipboard.writeText(x.replace(": ",":"))}', fn=None, show_progress=False) output_img2img_seed = gr.Number(label='Seed', interactive=False, visible=False) output_img2img_copy_seed = gr.Button("Copy only seed").click( inputs=output_img2img_seed, outputs=[], _js=call_JS("gradioInputToClipboard"), fn=None, show_progress=False) output_img2img_stats = gr.HTML(label='Stats') gr.Markdown('# img2img settings') with gr.Row(): with gr.Column(): img2img_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=img2img_defaults["width"]) img2img_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=img2img_defaults["height"]) img2img_cfg = gr.Slider(minimum=-40.0, maximum=30.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=img2img_defaults['cfg_scale'], elem_id='cfg_slider') img2img_seed = gr.Textbox(label="Seed (blank to randomize)", lines=1, max_lines=1, value=img2img_defaults["seed"]) img2img_batch_count = gr.Slider(minimum=1, maximum=50, step=1, label='Batch count (how many batches of images to generate)', value=img2img_defaults['n_iter']) img2img_dimensions_info_text_box = gr.Textbox(label="Aspect ratio (4:3 = 1.333 | 16:9 = 1.777 | 21:9 = 2.333)") with gr.Column(): img2img_steps = gr.Slider(minimum=1, maximum=250, step=1, label="Sampling Steps", value=img2img_defaults['ddim_steps']) img2img_sampling = gr.Dropdown(label='Sampling method (k_lms is default k-diffusion sampler)', choices=["DDIM", 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms'], value=img2img_defaults['sampler_name']) img2img_denoising = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising Strength', value=img2img_defaults['denoising_strength']) img2img_toggles = gr.CheckboxGroup(label='', choices=img2img_toggles, value=img2img_toggle_defaults, type="index") img2img_realesrgan_model_name = gr.Dropdown(label='RealESRGAN model', choices=['RealESRGAN_x4plus', 'RealESRGAN_x4plus_anime_6B'], value='RealESRGAN_x4plus', visible=RealESRGAN is not None) # TODO: Feels like I shouldnt slot it in here. img2img_embeddings = gr.File(label="Embeddings file for textual inversion", visible=show_embeddings) img2img_image_editor_mode.change( uifn.change_image_editor_mode, [img2img_image_editor_mode, img2img_image_editor, img2img_resize, img2img_width, img2img_height], [img2img_image_editor, img2img_image_mask, img2img_btn_editor, img2img_btn_mask, img2img_painterro_btn, img2img_mask, img2img_mask_blur_strength] ) img2img_image_editor.edit( uifn.update_image_mask, [img2img_image_editor, img2img_resize, img2img_width, img2img_height], img2img_image_mask ) output_txt2img_copy_to_input_btn.click( uifn.copy_img_to_input, [output_txt2img_gallery], [img2img_image_editor, img2img_image_mask, tabs], _js=call_JS("moveImageFromGallery", fromId="txt2img_gallery_output", toId="img2img_editor") ) output_img2img_copy_to_input_btn.click( uifn.copy_img_to_edit, [output_img2img_gallery], [img2img_image_editor, tabs, img2img_image_editor_mode], _js=call_JS("moveImageFromGallery", fromId="img2img_gallery_output", toId="img2img_editor") ) output_img2img_copy_to_mask_btn.click( uifn.copy_img_to_mask, [output_img2img_gallery], [img2img_image_mask, tabs, img2img_image_editor_mode], _js=call_JS("moveImageFromGallery", fromId="img2img_gallery_output", toId="img2img_editor") ) output_img2img_copy_to_clipboard_btn.click(fn=None, inputs=output_img2img_gallery, outputs=[], _js=call_JS("copyImageFromGalleryToClipboard", fromId="img2img_gallery_output") ) img2img_btn_mask.click( img2img, [img2img_prompt, img2img_image_editor_mode, img2img_image_mask, img2img_mask, img2img_mask_blur_strength, img2img_steps, img2img_sampling, img2img_toggles, img2img_realesrgan_model_name, img2img_batch_count, img2img_cfg, img2img_denoising, img2img_seed, img2img_height, img2img_width, img2img_resize, img2img_embeddings], [output_img2img_gallery, output_img2img_seed, output_img2img_params, output_img2img_stats] ) def img2img_submit_params(): return (img2img, [img2img_prompt, img2img_image_editor_mode, img2img_image_editor, img2img_mask, img2img_mask_blur_strength, img2img_steps, img2img_sampling, img2img_toggles, img2img_realesrgan_model_name, img2img_batch_count, img2img_cfg, img2img_denoising, img2img_seed, img2img_height, img2img_width, img2img_resize, img2img_embeddings], [output_img2img_gallery, output_img2img_seed, output_img2img_params, output_img2img_stats]) img2img_btn_editor.click(*img2img_submit_params()) # GENERATE ON ENTER img2img_prompt.submit(None, None, None, _js=call_JS("clickFirstVisibleButton", rowId="prompt_row")) img2img_painterro_btn.click(None, [img2img_image_editor], [img2img_image_editor, img2img_image_mask], _js=call_JS("Painterro.init", toId="img2img_editor") ) img2img_width.change(fn=uifn.update_dimensions_info, inputs=[img2img_width, img2img_height], outputs=img2img_dimensions_info_text_box) img2img_height.change(fn=uifn.update_dimensions_info, inputs=[img2img_width, img2img_height], outputs=img2img_dimensions_info_text_box) with gr.TabItem("Image Lab", id='imgproc_tab'): gr.Markdown("Post-process results") with gr.Row(): with gr.Column(): with gr.Tabs(): with gr.TabItem('Single Image'): imgproc_source = gr.Image(label="Source", source="upload", interactive=True, type="pil",elem_id="imglab_input") #gfpgan_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Effect strength", # value=gfpgan_defaults['strength']) #select folder with images to process with gr.TabItem('Batch Process'): imgproc_folder = gr.File(label="Batch Process", file_count="multiple",source="upload", interactive=True, type="file") with gr.Row(): imgproc_btn = gr.Button("Process", variant="primary") gr.HTML("""

Upscale Modes Guide

RealESRGAN

A 4X/2X fast upscaler that works well for stylized content, will smooth more detailed compositions.

GoBIG

A 2X upscaler that uses RealESRGAN to upscale the image and then slice it into small parts, each part gets diffused further by SD to create more details, great for adding and increasing details but will change the composition, might also fix issues like eyes etc, use the settings like img2img etc

Latent Diffusion Super Resolution

A 4X upscaler with high VRAM usage that uses a Latent Diffusion model to upscale the image, this will accentuate the details but won't change the composition, might introduce sharpening, great for textures or compositions with plenty of details, is slower.

GoLatent

A 8X upscaler with high VRAM usage, uses GoBig to add details and then uses a Latent Diffusion model to upscale the image, this will result in less artifacting/sharpeninng, use the settings to feed GoBig settings that will contribute to the result, this mode is considerbly slower

""") with gr.Column(): with gr.Tabs(): with gr.TabItem('Output'): imgproc_output = gr.Gallery(label="Output", elem_id="imgproc_gallery_output") with gr.Row(elem_id="proc_options_row"): imgproc_toggles = gr.CheckboxGroup(label='Processor Modes', choices=imgproc_mode_toggles, type="index") with gr.Tabs(): with gr.TabItem('Fix Face Settings'): gfpgan_defaults = { 'strength': 100, } if 'gfpgan' in user_defaults: gfpgan_defaults.update(user_defaults['gfpgan']) if GFPGAN is None: gr.HTML("""

Please download GFPGAN to activate face fixing features, instructions are available at the Github

""") #gr.Markdown("") #gr.Markdown(" Please download GFPGAN to activate face fixing features, instructions are available at the Github") imgproc_gfpgan_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Effect strength", value=gfpgan_defaults['strength'],visible=GFPGAN is not None) with gr.TabItem('Upscale Settings'): imgproc_realesrgan_model_name = gr.Dropdown(label='RealESRGAN model', interactive=RealESRGAN is not None, choices= ['RealESRGAN_x4plus', 'RealESRGAN_x4plus_anime_6B','RealESRGAN_x2plus', 'RealESRGAN_x2plus_anime_6B'], value='RealESRGAN_x4plus', visible=RealESRGAN is not None) # TODO: Feels like I shouldnt slot it in here. if LDSR: upscaleModes = ['RealESRGAN','GoBig','Latent Diffusion SR','GoLatent '] else: gr.HTML("""

Please download LDSR to activate more upscale features, instructions are available at the Github

""") upscaleModes = ['RealESRGAN','GoBig','Latent Diffusion SR'] #gr.Markdown(" Please download LDSR to activate more upscale features, instructions are available at the Github") upscaleModes = ['RealESRGAN','GoBig'] imgproc_upscale_toggles = gr.Radio(label='Upscale Modes', choices=upscaleModes, type="index",visible=RealESRGAN is not None) with gr.Row(elem_id="proc_prompt_row"): with gr.Column(): imgproc_prompt = gr.Textbox(label="These settings are applied only for GoBig and GoLatent modes", elem_id='prompt_input', placeholder="A corgi wearing a top hat as an oil painting.", lines=1, max_lines=1, value=imgproc_defaults['prompt'], show_label=True, visible=RealESRGAN is not None) imgproc_sampling = gr.Dropdown(label='Sampling method (k_lms is default k-diffusion sampler)', choices=["DDIM", 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms'], value=imgproc_defaults['sampler_name'],visible=RealESRGAN is not None) imgproc_steps = gr.Slider(minimum=1, maximum=250, step=1, label="Sampling Steps", value=imgproc_defaults['ddim_steps'],visible=RealESRGAN is not None) imgproc_cfg = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=imgproc_defaults['cfg_scale'],visible=RealESRGAN is not None) imgproc_denoising = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising Strength', value=imgproc_defaults['denoising_strength'],visible=RealESRGAN is not None) imgproc_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=imgproc_defaults["height"],visible=False) # not currently implemented imgproc_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=imgproc_defaults["width"],visible=False) # not currently implemented imgproc_seed = gr.Textbox(label="Seed (blank to randomize)", lines=1, max_lines=1, value=imgproc_defaults["seed"],visible=RealESRGAN is not None) imgproc_btn.click( imgproc, [imgproc_source, imgproc_folder,imgproc_prompt,imgproc_toggles, imgproc_upscale_toggles,imgproc_realesrgan_model_name,imgproc_sampling, imgproc_steps, imgproc_height, imgproc_width, imgproc_cfg, imgproc_denoising, imgproc_seed,imgproc_gfpgan_strength], [imgproc_output]) output_txt2img_to_imglab.click( uifn.copy_img_to_lab, [output_txt2img_gallery], [imgproc_source, tabs], _js=call_JS("moveImageFromGallery", fromId="txt2img_gallery_output", toId="imglab_input") ) if RealESRGAN is None: with gr.Row(): with gr.Column(): #seperator gr.HTML("""

Please download RealESRGAN to activate upscale features, instructions are available at the Github

""") """ if GFPGAN is not None: gfpgan_defaults = { 'strength': 100, } if 'gfpgan' in user_defaults: gfpgan_defaults.update(user_defaults['gfpgan']) with gr.TabItem("GFPGAN", id='cfpgan_tab'): gr.Markdown("Fix faces on images") with gr.Row(): with gr.Column(): gfpgan_source = gr.Image(label="Source", source="upload", interactive=True, type="pil") gfpgan_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Effect strength", value=gfpgan_defaults['strength']) gfpgan_btn = gr.Button("Generate", variant="primary") with gr.Column(): gfpgan_output = gr.Image(label="Output", elem_id='gan_image') gfpgan_btn.click( run_GFPGAN, [gfpgan_source, gfpgan_strength], [gfpgan_output] ) if RealESRGAN is not None: with gr.TabItem("RealESRGAN", id='realesrgan_tab'): gr.Markdown("Upscale images") with gr.Row(): with gr.Column(): realesrgan_source = gr.Image(label="Source", source="upload", interactive=True, type="pil") realesrgan_model_name = gr.Dropdown(label='RealESRGAN model', choices=['RealESRGAN_x4plus', 'RealESRGAN_x4plus_anime_6B'], value='RealESRGAN_x4plus') realesrgan_btn = gr.Button("Generate") with gr.Column(): realesrgan_output = gr.Image(label="Output", elem_id='gan_image') realesrgan_btn.click( run_RealESRGAN, [realesrgan_source, realesrgan_model_name], [realesrgan_output] ) output_txt2img_to_upscale_esrgan.click( uifn.copy_img_to_upscale_esrgan, output_txt2img_gallery, [realesrgan_source, tabs], _js=js_move_image('txt2img_gallery_output', 'img2img_editor')) """ gr.HTML("""

For help and advanced usage guides, visit the Project Wiki

Stable Diffusion WebUI is an open-source project. You can find the latest stable builds on the main repository. If you would like to contribute to development or test bleeding edge builds, you can visit the developement repository.

""") # Hack: Detect the load event on the frontend # Won't be needed in the next version of gradio # See the relevant PR: https://github.com/gradio-app/gradio/pull/2108 load_detector = gr.Number(value=0, label="Load Detector", visible=False) load_detector.change(None, None, None, _js=js(opt)) demo.load(lambda x: 42, inputs=load_detector, outputs=load_detector) return demo