import argparse, os, sys, glob import gradio as gr import k_diffusion as K import math import mimetypes import numpy as np import pynvml import random import threading import time import torch import torch.nn as nn from contextlib import contextmanager, nullcontext from einops import rearrange, repeat from itertools import islice from omegaconf import OmegaConf from PIL import Image, ImageFont, ImageDraw from torch import autocast from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.plms import PLMSSampler from ldm.util import instantiate_from_config try: # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. from transformers import logging logging.set_verbosity_error() except: pass # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI mimetypes.init() mimetypes.add_type('application/javascript', '.js') # some of those options should not be changed at all because they would break the model, so I removed them from options. opt_C = 4 opt_f = 8 LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) invalid_filename_chars = '<>:"/\|?*\n' parser = argparse.ArgumentParser() parser.add_argument("--outdir", type=str, nargs="?", help="dir to write results to", default=None) parser.add_argument("--skip_grid", action='store_true', help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",) parser.add_argument("--skip_save", action='store_true', help="do not save indiviual samples. For speed measurements.",) parser.add_argument("--n_rows", type=int, default=-1, help="rows in the grid; use -1 for autodetect and 0 for n_rows to be same as batch_size (default: -1)",) parser.add_argument("--config", type=str, default="configs/stable-diffusion/v1-inference.yaml", help="path to config which constructs model",) parser.add_argument("--ckpt", type=str, default="models/ldm/stable-diffusion-v1/model.ckpt", help="path to checkpoint of model",) parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast") parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN')) # i disagree with where you're putting it but since all guidefags are doing it this way, there you go parser.add_argument("--no-verify-input", action='store_true', help="do not verify input to check if it's too long") parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats") parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware accleration in browser)") opt = parser.parse_args() GFPGAN_dir = opt.gfpgan_dir css_hide_progressbar = """ .wrap .m-12 svg { display:none!important; } .wrap .m-12::before { content:"Loading..." } .progress-bar { display:none!important; } .meta-text { display:none!important; } """ def chunk(it, size): it = iter(it) return iter(lambda: tuple(islice(it, size)), ()) def load_model_from_config(config, ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) model.cuda() model.eval() return model def crash(e, s): global model global device print(s, '\n', e) del model del device print('exiting...calling os._exit(0)') t = threading.Timer(0.25, os._exit, args=[0]) t.start() class MemUsageMonitor(threading.Thread): stop_flag = False max_usage = 0 total = 0 def __init__(self, name): threading.Thread.__init__(self) self.name = name def run(self): print(f"[{self.name}] Recording max memory usage...\n") pynvml.nvmlInit() handle = pynvml.nvmlDeviceGetHandleByIndex(0) self.total = pynvml.nvmlDeviceGetMemoryInfo(handle).total while not self.stop_flag: m = pynvml.nvmlDeviceGetMemoryInfo(handle) self.max_usage = max(self.max_usage, m.used) # print(self.max_usage) time.sleep(0.1) print(f"[{self.name}] Stopped recording.\n") pynvml.nvmlShutdown() def read(self): return self.max_usage, self.total def stop(self): self.stop_flag = True def read_and_stop(self): self.stop_flag = True return self.max_usage, self.total class CFGDenoiser(nn.Module): def __init__(self, model): super().__init__() self.inner_model = model def forward(self, x, sigma, uncond, cond, cond_scale): x_in = torch.cat([x] * 2) sigma_in = torch.cat([sigma] * 2) cond_in = torch.cat([uncond, cond]) uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) return uncond + (cond - uncond) * cond_scale class KDiffusionSampler: def __init__(self, m): self.model = m self.model_wrap = K.external.CompVisDenoiser(m) def sample(self, S, conditioning, batch_size, shape, verbose, unconditional_guidance_scale, unconditional_conditioning, eta, x_T): sigmas = self.model_wrap.get_sigmas(S) x = x_T * sigmas[0] model_wrap_cfg = CFGDenoiser(self.model_wrap) samples_ddim = K.sampling.sample_lms(model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale}, disable=False) return samples_ddim, None class MemUsageMonitor(threading.Thread): stop_flag = False max_usage = 0 total = 0 def __init__(self, name): threading.Thread.__init__(self) self.name = name def run(self): print(f"[{self.name}] Recording max memory usage...\n") pynvml.nvmlInit() handle = pynvml.nvmlDeviceGetHandleByIndex(0) self.total = pynvml.nvmlDeviceGetMemoryInfo(handle).total while not self.stop_flag: m = pynvml.nvmlDeviceGetMemoryInfo(handle) self.max_usage = max(self.max_usage, m.used) # print(self.max_usage) time.sleep(0.1) print(f"[{self.name}] Stopped recording.\n") pynvml.nvmlShutdown() def read(self): return self.max_usage, self.total def stop(self): self.stop_flag = True def read_and_stop(self): self.stop_flag = True return self.max_usage, self.total def create_random_tensors(shape, seeds): xs = [] for seed in seeds: torch.manual_seed(seed) # randn results depend on device; gpu and cpu get different results for same seed; # the way I see it, it's better to do this on CPU, so that everyone gets same result; # but the original script had it like this so i do not dare change it for now because # it will break everyone's seeds. xs.append(torch.randn(shape, device=device)) x = torch.stack(xs) return x def torch_gc(): torch.cuda.empty_cache() torch.cuda.ipc_collect() def load_GFPGAN(): model_name = 'GFPGANv1.3' model_path = os.path.join(GFPGAN_dir, 'experiments/pretrained_models', model_name + '.pth') if not os.path.isfile(model_path): raise Exception("GFPGAN model not found at path "+model_path) sys.path.append(os.path.abspath(GFPGAN_dir)) from gfpgan import GFPGANer return GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None) GFPGAN = None if os.path.exists(GFPGAN_dir): try: GFPGAN = load_GFPGAN() print("Loaded GFPGAN") except Exception: import traceback print("Error loading GFPGAN:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) config = OmegaConf.load("configs/stable-diffusion/v1-inference.yaml") model = load_model_from_config(config, "models/ldm/stable-diffusion-v1/model.ckpt") device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model = (model if opt.no_half else model.half()).to(device) def image_grid(imgs, batch_size, round_down=False, force_n_rows=None): if force_n_rows is not None: rows = force_n_rows elif opt.n_rows > 0: rows = opt.n_rows elif opt.n_rows == 0: rows = batch_size else: rows = math.sqrt(len(imgs)) rows = int(rows) if round_down else round(rows) cols = math.ceil(len(imgs) / rows) w, h = imgs[0].size grid = Image.new('RGB', size=(cols * w, rows * h), color='black') for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid def draw_prompt_matrix(im, width, height, all_prompts): def wrap(text, d, font, line_length): lines = [''] for word in text.split(): line = f'{lines[-1]} {word}'.strip() if d.textlength(line, font=font) <= line_length: lines[-1] = line else: lines.append(word) return '\n'.join(lines) def draw_texts(pos, x, y, texts, sizes): for i, (text, size) in enumerate(zip(texts, sizes)): active = pos & (1 << i) != 0 if not active: text = '\u0336'.join(text) + '\u0336' d.multiline_text((x, y + size[1] / 2), text, font=fnt, fill=color_active if active else color_inactive, anchor="mm", align="center") y += size[1] + line_spacing fontsize = (width + height) // 25 line_spacing = fontsize // 2 fnt = ImageFont.truetype("arial.ttf", fontsize) color_active = (0, 0, 0) color_inactive = (153, 153, 153) pad_top = height // 4 pad_left = width * 3 // 4 if len(all_prompts) > 2 else 0 cols = im.width // width rows = im.height // height prompts = all_prompts[1:] result = Image.new("RGB", (im.width + pad_left, im.height + pad_top), "white") result.paste(im, (pad_left, pad_top)) d = ImageDraw.Draw(result) boundary = math.ceil(len(prompts) / 2) prompts_horiz = [wrap(x, d, fnt, width) for x in prompts[:boundary]] prompts_vert = [wrap(x, d, fnt, pad_left) for x in prompts[boundary:]] sizes_hor = [(x[2] - x[0], x[3] - x[1]) for x in [d.multiline_textbbox((0, 0), x, font=fnt) for x in prompts_horiz]] sizes_ver = [(x[2] - x[0], x[3] - x[1]) for x in [d.multiline_textbbox((0, 0), x, font=fnt) for x in prompts_vert]] hor_text_height = sum([x[1] + line_spacing for x in sizes_hor]) - line_spacing ver_text_height = sum([x[1] + line_spacing for x in sizes_ver]) - line_spacing for col in range(cols): x = pad_left + width * col + width / 2 y = pad_top / 2 - hor_text_height / 2 draw_texts(col, x, y, prompts_horiz, sizes_hor) for row in range(rows): x = pad_left / 2 y = pad_top + height * row + height / 2 - ver_text_height / 2 draw_texts(row, x, y, prompts_vert, sizes_ver) return result def resize_image(resize_mode, im, width, height): if resize_mode == 0: res = im.resize((width, height), resample=LANCZOS) elif resize_mode == 1: ratio = width / height src_ratio = im.width / im.height src_w = width if ratio > src_ratio else im.width * height // im.height src_h = height if ratio <= src_ratio else im.height * width // im.width resized = im.resize((src_w, src_h), resample=LANCZOS) res = Image.new("RGB", (width, height)) res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) else: ratio = width / height src_ratio = im.width / im.height src_w = width if ratio < src_ratio else im.width * height // im.height src_h = height if ratio >= src_ratio else im.height * width // im.width resized = im.resize((src_w, src_h), resample=LANCZOS) res = Image.new("RGB", (width, height)) res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) if ratio < src_ratio: fill_height = height // 2 - src_h // 2 res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0)) res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h)) elif ratio > src_ratio: fill_width = width // 2 - src_w // 2 res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0)) res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0)) return res def check_prompt_length(prompt, comments): """this function tests if prompt is too long, and if so, adds a message to comments""" tokenizer = model.cond_stage_model.tokenizer max_length = model.cond_stage_model.max_length info = model.cond_stage_model.tokenizer([prompt], truncation=True, max_length=max_length, return_overflowing_tokens=True, padding="max_length", return_tensors="pt") ovf = info['overflowing_tokens'][0] overflowing_count = ovf.shape[0] if overflowing_count == 0: return vocab = {v: k for k, v in tokenizer.get_vocab().items()} overflowing_words = [vocab.get(int(x), "") for x in ovf] overflowing_text = tokenizer.convert_tokens_to_string(''.join(overflowing_words)) comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n") def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name, skip_grid, skip_save, batch_size, n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN, do_not_save_grid=False, normalize_prompt_weights=True): """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch""" assert prompt is not None torch_gc() # start time after garbage collection (or before?) start_time = time.time() mem_mon = MemUsageMonitor('MemMon') mem_mon.start() if seed == -1: seed = random.randrange(4294967294) seed = int(seed) os.makedirs(outpath, exist_ok=True) sample_path = os.path.join(outpath, "samples") os.makedirs(sample_path, exist_ok=True) base_count = len(os.listdir(sample_path)) grid_count = len(os.listdir(outpath)) - 1 comments = [] prompt_matrix_parts = [] if prompt_matrix: all_prompts = [] prompt_matrix_parts = prompt.split("|") combination_count = 2 ** (len(prompt_matrix_parts) - 1) for combination_num in range(combination_count): current = prompt_matrix_parts[0] for n, text in enumerate(prompt_matrix_parts[1:]): if combination_num & (2 ** n) > 0: current += ("" if text.strip().startswith(",") else ", ") + text all_prompts.append(current) n_iter = math.ceil(len(all_prompts) / batch_size) all_seeds = len(all_prompts) * [seed] print(f"Prompt matrix will create {len(all_prompts)} images using a total of {n_iter} batches.") else: if not opt.no_verify_input: try: check_prompt_length(prompt, comments) except: import traceback print("Error verifying input:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) all_prompts = batch_size * n_iter * [prompt] all_seeds = [seed + x for x in range(len(all_prompts))] precision_scope = autocast if opt.precision == "autocast" else nullcontext output_images = [] stats = [] with torch.no_grad(), precision_scope("cuda"), model.ema_scope(): init_data = func_init() tic = time.time() for n in range(n_iter): prompts = all_prompts[n * batch_size:(n + 1) * batch_size] seeds = all_seeds[n * batch_size:(n + 1) * batch_size] uc = None if cfg_scale != 1.0: uc = model.get_learned_conditioning(len(prompts) * [""]) if isinstance(prompts, tuple): prompts = list(prompts) # split the prompt if it has : for weighting # TODO for speed it might help to have this occur when all_prompts filled?? subprompts,weights = split_weighted_subprompts(prompts[0]) # get total weight for normalizing, this gets weird if large negative values used totalPromptWeight = sum(weights) # sub-prompt weighting used if more than 1 if len(subprompts) > 1: c = torch.zeros_like(uc) # i dont know if this is correct.. but it works for i in range(0,len(subprompts)): # normalize each prompt and add it weight = weights[i] if normalize_prompt_weights: weight = weight / totalPromptWeight #print(f"{subprompts[i]} {weight*100.0}%") # note if alpha negative, it functions same as torch.sub c = torch.add(c,model.get_learned_conditioning(subprompts[i]), alpha=weight) else: # just behave like usual c = model.get_learned_conditioning(prompts) shape = [opt_C, height // opt_f, width // opt_f] # we manually generate all input noises because each one should have a specific seed x = create_random_tensors([opt_C, height // opt_f, width // opt_f], seeds=seeds) samples_ddim = func_sample(init_data=init_data, x=x, conditioning=c, unconditional_conditioning=uc, sampler_name=sampler_name) x_samples_ddim = model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) # removed or not skip_grid, both skip = benchmark ;) if prompt_matrix or not skip_save: for i, x_sample in enumerate(x_samples_ddim): x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') x_sample = x_sample.astype(np.uint8) if use_GFPGAN and GFPGAN is not None: cropped_faces, restored_faces, restored_img = GFPGAN.enhance(x_sample, has_aligned=False, only_center_face=False, paste_back=True) x_sample = restored_img image = Image.fromarray(x_sample) filename = f"{base_count:05}-{seeds[i]}_{prompts[i].replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]}.png" image.save(os.path.join(sample_path, filename)) output_images.append(image) base_count += 1 if (prompt_matrix or not skip_grid) and not do_not_save_grid: grid = image_grid(output_images, batch_size, round_down=prompt_matrix) if prompt_matrix: try: grid = draw_prompt_matrix(grid, width, height, prompt_matrix_parts) except Exception: import traceback print("Error creating prompt_matrix text:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) output_images.insert(0, grid) grid_file = f"grid-{grid_count:05}-{seed}_{prompts[i].replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]}.jpg" grid.save(os.path.join(outpath, grid_file), 'jpeg', quality=80, optimize=True) grid_count += 1 toc = time.time() mem_max_used, mem_total = mem_mon.read_and_stop() time_diff = time.time()-start_time info = f""" {prompt} Steps: {steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', GFPGAN' if use_GFPGAN and GFPGAN is not None else ''}{', Prompt Matrix Mode.' if prompt_matrix else ''}""".strip() stats = f''' Took { round(time_diff, 2) }s total ({ round(time_diff/(len(all_prompts)),2) }s per image) Peak memory usage: { -(mem_max_used // -1_048_576) } MiB / { -(mem_total // -1_048_576) } MiB / { round(mem_max_used/mem_total*100, 3) }%''' for comment in comments: info += "\n\n" + comment #mem_mon.stop() #del mem_mon torch_gc() return output_images, seed, info, stats def txt2img(prompt: str, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, prompt_matrix: bool, skip_grid: bool, skip_save: bool, ddim_eta: float, n_iter: int, batch_size: int, cfg_scale: float, seed: int, height: int, width: int, normalize_prompt_weights: bool): outpath = opt.outdir or "outputs/txt2img-samples" err = False if sampler_name == 'PLMS': sampler = PLMSSampler(model) elif sampler_name == 'DDIM': sampler = DDIMSampler(model) elif sampler_name == 'k-diffusion': sampler = KDiffusionSampler(model) else: raise Exception("Unknown sampler: " + sampler_name) def init(): pass def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name): samples_ddim, _ = sampler.sample(S=ddim_steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=unconditional_conditioning, eta=ddim_eta, x_T=x) return samples_ddim try: output_images, seed, info, stats = process_images( outpath=outpath, func_init=init, func_sample=sample, prompt=prompt, seed=seed, sampler_name=sampler_name, skip_save=skip_save, skip_grid=skip_grid, batch_size=batch_size, n_iter=n_iter, steps=ddim_steps, cfg_scale=cfg_scale, width=width, height=height, prompt_matrix=prompt_matrix, use_GFPGAN=use_GFPGAN, normalize_prompt_weights=normalize_prompt_weights ) del sampler return output_images, seed, info, stats except RuntimeError as e: err = e err_msg = f'CRASHED:


Please wait while the program restarts.' stats = err_msg return [], 1 finally: if err: crash(err, '!!Runtime error (txt2img)!!') class Flagging(gr.FlaggingCallback): def setup(self, components, flagging_dir: str): pass def flag(self, flag_data, flag_option=None, flag_index=None, username=None): import csv os.makedirs("log/images", exist_ok=True) # those must match the "txt2img" function prompt, ddim_steps, sampler_name, use_GFPGAN, prompt_matrix, ddim_eta, n_iter, n_samples, cfg_scale, request_seed, height, width, images, seed, comment = flag_data filenames = [] with open("log/log.csv", "a", encoding="utf8", newline='') as file: import time import base64 at_start = file.tell() == 0 writer = csv.writer(file) if at_start: writer.writerow(["prompt", "seed", "width", "height", "cfgs", "steps", "filename"]) filename_base = str(int(time.time() * 1000)) for i, filedata in enumerate(images): filename = "log/images/"+filename_base + ("" if len(images) == 1 else "-"+str(i+1)) + ".png" if filedata.startswith("data:image/png;base64,"): filedata = filedata[len("data:image/png;base64,"):] with open(filename, "wb") as imgfile: imgfile.write(base64.decodebytes(filedata.encode('utf-8'))) filenames.append(filename) writer.writerow([prompt, seed, width, height, cfg_scale, ddim_steps, filenames[0]]) print("Logged:", filenames[0]) txt2img_interface = gr.Interface( txt2img, inputs=[ gr.Textbox(label="Prompt", placeholder="A corgi wearing a top hat as an oil painting.", lines=1), gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50), gr.Radio(label='Sampling method', choices=["DDIM", "PLMS", "k-diffusion"], value="k-diffusion"), gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=GFPGAN is not None), gr.Checkbox(label='Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', value=False), gr.Checkbox(label='Skip grid', value=False), gr.Checkbox(label='Skip save individual images', value=False), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=0.0, visible=False), gr.Slider(minimum=1, maximum=16, step=1, label='Batch count (how many batches of images to generate)', value=1), gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1), gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0), gr.Number(label='Seed', value=-1), gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512), gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512), gr.Checkbox(label="Normalize Prompt Weights (ensure sum of weights add up to 1.0)", value=True), ], outputs=[ gr.Gallery(label="Images"), gr.Number(label='Seed'), gr.Textbox(label="Copy-paste generation parameters"), gr.HTML(label='Stats'), ], title="Stable Diffusion Text-to-Image Unified", description="Generate images from text with Stable Diffusion", flagging_callback=Flagging(), theme="default", ) def img2img(prompt: str, init_img, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, prompt_matrix, loopback: bool, skip_grid: bool, skip_save: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int, resize_mode: int, normalize_prompt_weights: bool): outpath = opt.outdir or "outputs/img2img-samples" err = False if sampler_name == 'DDIM': sampler = DDIMSampler(model) elif sampler_name == 'k-diffusion': sampler = KDiffusionSampler(model) else: raise Exception("Unknown sampler: " + sampler_name) assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]' t_enc = int(denoising_strength * ddim_steps) def init(): image = init_img.convert("RGB") image = resize_image(resize_mode, image, width, height) image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) init_image = 2. * image - 1. init_image = init_image.to(device) init_image = repeat(init_image, '1 ... -> b ...', b=batch_size) init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space return init_latent, def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name): if sampler_name == 'k-diffusion': x0, = init_data sigmas = sampler.model_wrap.get_sigmas(ddim_steps) noise = x * sigmas[ddim_steps - t_enc - 1] xi = x0 + noise sigma_sched = sigmas[ddim_steps - t_enc - 1:] model_wrap_cfg = CFGDenoiser(sampler.model_wrap) samples_ddim = K.sampling.sample_lms(model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': cfg_scale}, disable=False) else: x0, = init_data sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=0.0, verbose=False) z_enc = sampler.stochastic_encode(x0, torch.tensor([t_enc]*batch_size).to(device)) # decode it samples_ddim = sampler.decode(z_enc, conditioning, t_enc, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=unconditional_conditioning,) return samples_ddim try: if loopback: output_images, info = None, None history = [] initial_seed = None for i in range(n_iter): output_images, seed, info, stats = process_images( outpath=outpath, func_init=init, func_sample=sample, prompt=prompt, seed=seed, sampler_name=sampler_name, skip_save=skip_save, skip_grid=skip_grid, batch_size=1, n_iter=1, steps=ddim_steps, cfg_scale=cfg_scale, width=width, height=height, prompt_matrix=prompt_matrix, use_GFPGAN=use_GFPGAN, do_not_save_grid=True ) if initial_seed is None: initial_seed = seed init_img = output_images[0] seed = seed + 1 denoising_strength = max(denoising_strength * 0.95, 0.1) history.append(init_img) grid_count = len(os.listdir(outpath)) - 1 grid = image_grid(history, batch_size, force_n_rows=1) grid_file = f"grid-{grid_count:05}-{seed}_{prompt.replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]}.jpg" grid.save(os.path.join(outpath, grid_file), 'jpeg', quality=80, optimize=True) output_images = history seed = initial_seed else: output_images, seed, info, stats = process_images( outpath=outpath, func_init=init, func_sample=sample, prompt=prompt, seed=seed, sampler_name=sampler_name, skip_save=skip_save, skip_grid=skip_grid, batch_size=batch_size, n_iter=n_iter, steps=ddim_steps, cfg_scale=cfg_scale, width=width, height=height, prompt_matrix=prompt_matrix, use_GFPGAN=use_GFPGAN, normalize_prompt_weights=normalize_prompt_weights ) del sampler return output_images, seed, info, stats except RuntimeError as e: err = e err_msg = f'CRASHED:


Please wait while the program restarts.' stats = err_msg return [], 1 finally: if err: crash(err, '!!Runtime error (img2img)!!') sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg" sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None img2img_interface = gr.Interface( img2img, inputs=[ gr.Textbox(placeholder="A fantasy landscape, trending on artstation.", lines=1), gr.Image(value=sample_img2img, source="upload", interactive=True, type="pil"), gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50), gr.Radio(label='Sampling method', choices=["DDIM", "k-diffusion"], value="k-diffusion"), gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=GFPGAN is not None), gr.Checkbox(label='Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', value=False), gr.Checkbox(label='Loopback (use images from previous batch when creating next batch)', value=False), gr.Checkbox(label='Skip grid', value=False), gr.Checkbox(label='Skip save individual images', value=False), gr.Slider(minimum=1, maximum=16, step=1, label='Batch count (how many batches of images to generate)', value=1), gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1), gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising Strength', value=0.75), gr.Number(label='Seed', value=-1), gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512), gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512), gr.Radio(label="Resize mode", choices=["Just resize", "Crop and resize", "Resize and fill"], type="index", value="Just resize"), gr.Checkbox(label="Normalize Prompt Weights (ensure sum of weights add up to 1.0)", value=True), ], outputs=[ gr.Gallery(), gr.Number(label='Seed'), gr.Textbox(label="Copy-paste generation parameters"), gr.HTML(label='Stats'), ], title="Stable Diffusion Image-to-Image Unified", description="Generate images from images with Stable Diffusion", allow_flagging="never", theme="default", ) interfaces = [ (txt2img_interface, "txt2img"), (img2img_interface, "img2img") ] # grabs all text up to the first occurrence of ':' as sub-prompt # takes the value following ':' as weight # if ':' has no value defined, defaults to 1.0 # repeats until no text remaining # TODO this could probably be done with less code def split_weighted_subprompts(text): print(text) remaining = len(text) prompts = [] weights = [] while remaining > 0: if ":" in text: idx = text.index(":") # first occurrence from start # grab up to index as sub-prompt prompt = text[:idx] remaining -= idx # remove from main text text = text[idx+1:] # find value for weight, assume it is followed by a space or comma idx = len(text) # default is read to end of text if " " in text: idx = min(idx,text.index(" ")) # want the closer idx if "," in text: idx = min(idx,text.index(",")) # want the closer idx if idx != 0: try: weight = float(text[:idx]) except: # couldn't treat as float print(f"Warning: '{text[:idx]}' is not a value, are you missing a space or comma after a value?") weight = 1.0 else: # no value found weight = 1.0 # remove from main text remaining -= idx text = text[idx+1:] # append the sub-prompt and its weight prompts.append(prompt) weights.append(weight) else: # no : found if len(text) > 0: # there is still text though # take remainder as weight 1 prompts.append(text) weights.append(1.0) remaining = 0 return prompts, weights def run_GFPGAN(image, strength): image = image.convert("RGB") cropped_faces, restored_faces, restored_img = GFPGAN.enhance(np.array(image, dtype=np.uint8), has_aligned=False, only_center_face=False, paste_back=True) res = Image.fromarray(restored_img) if strength < 1.0: res = Image.blend(image, res, strength) return res if GFPGAN is not None: interfaces.append((gr.Interface( run_GFPGAN, inputs=[ gr.Image(label="Source", source="upload", interactive=True, type="pil"), gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Effect strength", value=100), ], outputs=[ gr.Image(label="Result"), ], title="GFPGAN", description="Fix faces on images", allow_flagging="never", theme="default", ), "GFPGAN")) demo = gr.TabbedInterface( interface_list=[x[0] for x in interfaces], tab_names=[x[1] for x in interfaces], css=("" if opt.no_progressbar_hiding else css_hide_progressbar), theme="default", ) demo.launch(show_error=True, server_name='0.0.0.0')