sygil-webui/ldm/data/nlvr_dataset.py
2023-06-23 02:58:24 +00:00

80 lines
2.5 KiB
Python

import os
import json
import random
from torch.utils.data import Dataset
from torchvision.datasets.utils import download_url
from PIL import Image
from data.utils import pre_caption
class nlvr_dataset(Dataset):
def __init__(self, transform, image_root, ann_root, split):
"""
image_root (string): Root directory of images
ann_root (string): directory to store the annotation file
split (string): train, val or test
"""
urls = {
"train": "https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_train.json",
"val": "https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_dev.json",
"test": "https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_test.json",
}
filenames = {
"train": "nlvr_train.json",
"val": "nlvr_dev.json",
"test": "nlvr_test.json",
}
download_url(urls[split], ann_root)
self.annotation = json.load(open(os.path.join(ann_root, filenames[split]), "r"))
self.transform = transform
self.image_root = image_root
def __len__(self):
return len(self.annotation)
def __getitem__(self, index):
ann = self.annotation[index]
image0_path = os.path.join(self.image_root, ann["images"][0])
image0 = Image.open(image0_path).convert("RGB")
image0 = self.transform(image0)
image1_path = os.path.join(self.image_root, ann["images"][1])
image1 = Image.open(image1_path).convert("RGB")
image1 = self.transform(image1)
sentence = pre_caption(ann["sentence"], 40)
if ann["label"] == "True":
label = 1
else:
label = 0
words = sentence.split(" ")
if "left" not in words and "right" not in words:
if random.random() < 0.5:
return image0, image1, sentence, label
else:
return image1, image0, sentence, label
else:
if random.random() < 0.5:
return image0, image1, sentence, label
else:
new_words = []
for word in words:
if word == "left":
new_words.append("right")
elif word == "right":
new_words.append("left")
else:
new_words.append(word)
sentence = " ".join(new_words)
return image1, image0, sentence, label