mirror of
https://github.com/Sygil-Dev/sygil-webui.git
synced 2024-12-14 22:13:41 +03:00
a9bc7eae19
for more information, see https://pre-commit.ci
107 lines
3.4 KiB
Python
107 lines
3.4 KiB
Python
import os
|
|
import json
|
|
from PIL import Image
|
|
|
|
import torch
|
|
from torch.utils.data import Dataset
|
|
from data.utils import pre_question
|
|
|
|
from torchvision.datasets.utils import download_url
|
|
|
|
|
|
class vqa_dataset(Dataset):
|
|
def __init__(
|
|
self, transform, ann_root, vqa_root, vg_root, train_files=[], split="train"
|
|
):
|
|
self.split = split
|
|
|
|
self.transform = transform
|
|
self.vqa_root = vqa_root
|
|
self.vg_root = vg_root
|
|
|
|
if split == "train":
|
|
urls = {
|
|
"vqa_train": "https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_train.json",
|
|
"vqa_val": "https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_val.json",
|
|
"vg_qa": "https://storage.googleapis.com/sfr-vision-language-research/datasets/vg_qa.json",
|
|
}
|
|
|
|
self.annotation = []
|
|
for f in train_files:
|
|
download_url(urls[f], ann_root)
|
|
self.annotation += json.load(
|
|
open(os.path.join(ann_root, "%s.json" % f), "r")
|
|
)
|
|
else:
|
|
download_url(
|
|
"https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_test.json",
|
|
ann_root,
|
|
)
|
|
self.annotation = json.load(
|
|
open(os.path.join(ann_root, "vqa_test.json"), "r")
|
|
)
|
|
|
|
download_url(
|
|
"https://storage.googleapis.com/sfr-vision-language-research/datasets/answer_list.json",
|
|
ann_root,
|
|
)
|
|
self.answer_list = json.load(
|
|
open(os.path.join(ann_root, "answer_list.json"), "r")
|
|
)
|
|
|
|
def __len__(self):
|
|
return len(self.annotation)
|
|
|
|
def __getitem__(self, index):
|
|
ann = self.annotation[index]
|
|
|
|
if ann["dataset"] == "vqa":
|
|
image_path = os.path.join(self.vqa_root, ann["image"])
|
|
elif ann["dataset"] == "vg":
|
|
image_path = os.path.join(self.vg_root, ann["image"])
|
|
|
|
image = Image.open(image_path).convert("RGB")
|
|
image = self.transform(image)
|
|
|
|
if self.split == "test":
|
|
question = pre_question(ann["question"])
|
|
question_id = ann["question_id"]
|
|
return image, question, question_id
|
|
|
|
elif self.split == "train":
|
|
question = pre_question(ann["question"])
|
|
|
|
if ann["dataset"] == "vqa":
|
|
answer_weight = {}
|
|
for answer in ann["answer"]:
|
|
if answer in answer_weight.keys():
|
|
answer_weight[answer] += 1 / len(ann["answer"])
|
|
else:
|
|
answer_weight[answer] = 1 / len(ann["answer"])
|
|
|
|
answers = list(answer_weight.keys())
|
|
weights = list(answer_weight.values())
|
|
|
|
elif ann["dataset"] == "vg":
|
|
answers = [ann["answer"]]
|
|
weights = [0.2]
|
|
|
|
return image, question, answers, weights
|
|
|
|
|
|
def vqa_collate_fn(batch):
|
|
image_list, question_list, answer_list, weight_list, n = [], [], [], [], []
|
|
for image, question, answer, weights in batch:
|
|
image_list.append(image)
|
|
question_list.append(question)
|
|
weight_list += weights
|
|
answer_list += answer
|
|
n.append(len(answer))
|
|
return (
|
|
torch.stack(image_list, dim=0),
|
|
question_list,
|
|
answer_list,
|
|
torch.Tensor(weight_list),
|
|
n,
|
|
)
|