mirror of
https://github.com/Sygil-Dev/sygil-webui.git
synced 2024-12-15 06:21:34 +03:00
2232 lines
100 KiB
Python
2232 lines
100 KiB
Python
import warnings
|
|
import streamlit as st
|
|
from streamlit import StopException, StreamlitAPIException
|
|
|
|
import base64, cv2
|
|
import argparse, os, sys, glob, re, random, datetime
|
|
from PIL import Image, ImageFont, ImageDraw, ImageFilter, ImageOps
|
|
from PIL.PngImagePlugin import PngInfo
|
|
import requests
|
|
from scipy import integrate
|
|
import torch
|
|
from torchdiffeq import odeint
|
|
from tqdm.auto import trange, tqdm
|
|
import k_diffusion as K
|
|
import math
|
|
import mimetypes
|
|
import numpy as np
|
|
import pynvml
|
|
import threading, asyncio
|
|
import time, inspect
|
|
import torch
|
|
from torch import autocast
|
|
from torchvision import transforms
|
|
import torch.nn as nn
|
|
import yaml
|
|
from typing import List, Union
|
|
from pathlib import Path
|
|
from tqdm import tqdm
|
|
from contextlib import contextmanager, nullcontext
|
|
from einops import rearrange, repeat
|
|
from itertools import islice
|
|
from omegaconf import OmegaConf
|
|
from io import BytesIO
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
from ldm.models.diffusion.plms import PLMSSampler
|
|
from ldm.util import instantiate_from_config
|
|
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, \
|
|
extract_into_tensor
|
|
from retry import retry
|
|
|
|
# these are for testing txt2vid, should be removed and we should use things from our own code.
|
|
from diffusers import StableDiffusionPipeline
|
|
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
|
|
|
#will be used for saving and reading a video made by the txt2vid function
|
|
import imageio, io
|
|
|
|
# we use python-slugify to make the filenames safe for windows and linux, its better than doing it manually
|
|
# install it with 'pip install python-slugify'
|
|
from slugify import slugify
|
|
|
|
try:
|
|
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
|
|
from transformers import logging
|
|
|
|
logging.set_verbosity_error()
|
|
except:
|
|
pass
|
|
|
|
# remove some annoying deprecation warnings that show every now and then.
|
|
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
|
|
|
defaults = OmegaConf.load("configs/webui/webui_streamlit.yaml")
|
|
if (os.path.exists("configs/webui/userconfig_streamlit.yaml")):
|
|
user_defaults = OmegaConf.load("configs/webui/userconfig_streamlit.yaml");
|
|
defaults = OmegaConf.merge(defaults, user_defaults)
|
|
|
|
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI
|
|
mimetypes.init()
|
|
mimetypes.add_type('application/javascript', '.js')
|
|
|
|
# some of those options should not be changed at all because they would break the model, so I removed them from options.
|
|
opt_C = 4
|
|
opt_f = 8
|
|
|
|
# should and will be moved to a settings menu in the UI at some point
|
|
grid_format = [s.lower() for s in defaults.general.grid_format.split(':')]
|
|
grid_lossless = False
|
|
grid_quality = 100
|
|
if grid_format[0] == 'png':
|
|
grid_ext = 'png'
|
|
grid_format = 'png'
|
|
elif grid_format[0] in ['jpg', 'jpeg']:
|
|
grid_quality = int(grid_format[1]) if len(grid_format) > 1 else 100
|
|
grid_ext = 'jpg'
|
|
grid_format = 'jpeg'
|
|
elif grid_format[0] == 'webp':
|
|
grid_quality = int(grid_format[1]) if len(grid_format) > 1 else 100
|
|
grid_ext = 'webp'
|
|
grid_format = 'webp'
|
|
if grid_quality < 0: # e.g. webp:-100 for lossless mode
|
|
grid_lossless = True
|
|
grid_quality = abs(grid_quality)
|
|
|
|
# this should force GFPGAN and RealESRGAN onto the selected gpu as well
|
|
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = str(defaults.general.gpu)
|
|
|
|
@retry(tries=5)
|
|
def load_models(continue_prev_run = False, use_GFPGAN=False, use_RealESRGAN=False, RealESRGAN_model="RealESRGAN_x4plus",
|
|
CustomModel_available=False, custom_model="Stable Diffusion v1.4"):
|
|
"""Load the different models. We also reuse the models that are already in memory to speed things up instead of loading them again. """
|
|
|
|
print ("Loading models.")
|
|
|
|
# Generate random run ID
|
|
# Used to link runs linked w/ continue_prev_run which is not yet implemented
|
|
# Use URL and filesystem safe version just in case.
|
|
st.session_state["run_id"] = base64.urlsafe_b64encode(
|
|
os.urandom(6)
|
|
).decode("ascii")
|
|
|
|
# check what models we want to use and if the they are already loaded.
|
|
|
|
if use_GFPGAN:
|
|
if "GFPGAN" in st.session_state:
|
|
print("GFPGAN already loaded")
|
|
else:
|
|
# Load GFPGAN
|
|
if os.path.exists(defaults.general.GFPGAN_dir):
|
|
try:
|
|
st.session_state["GFPGAN"] = load_GFPGAN()
|
|
print("Loaded GFPGAN")
|
|
except Exception:
|
|
import traceback
|
|
print("Error loading GFPGAN:", file=sys.stderr)
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
else:
|
|
if "GFPGAN" in st.session_state:
|
|
del st.session_state["GFPGAN"]
|
|
|
|
if use_RealESRGAN:
|
|
if "RealESRGAN" in st.session_state and st.session_state["RealESRGAN"].model.name == RealESRGAN_model:
|
|
print("RealESRGAN already loaded")
|
|
else:
|
|
#Load RealESRGAN
|
|
try:
|
|
# We first remove the variable in case it has something there,
|
|
# some errors can load the model incorrectly and leave things in memory.
|
|
del st.session_state["RealESRGAN"]
|
|
except KeyError:
|
|
pass
|
|
|
|
if os.path.exists(defaults.general.RealESRGAN_dir):
|
|
# st.session_state is used for keeping the models in memory across multiple pages or runs.
|
|
st.session_state["RealESRGAN"] = load_RealESRGAN(RealESRGAN_model)
|
|
print("Loaded RealESRGAN with model "+ st.session_state["RealESRGAN"].model.name)
|
|
|
|
else:
|
|
if "RealESRGAN" in st.session_state:
|
|
del st.session_state["RealESRGAN"]
|
|
|
|
|
|
|
|
if "model" in st.session_state:
|
|
if "model" in st.session_state and st.session_state["custom_model"] == custom_model:
|
|
print("Model already loaded")
|
|
else:
|
|
try:
|
|
del st.session_state["model"]
|
|
except KeyError:
|
|
pass
|
|
|
|
config = OmegaConf.load(defaults.general.default_model_config)
|
|
|
|
if custom_model == defaults.general.default_model:
|
|
model = load_model_from_config(config, defaults.general.default_model_path)
|
|
else:
|
|
model = load_model_from_config(config, os.path.join("models","custom", f"{custom_model}.ckpt"))
|
|
|
|
st.session_state["custom_model"] = custom_model
|
|
st.session_state["device"] = torch.device(f"cuda:{defaults.general.gpu}") if torch.cuda.is_available() else torch.device("cpu")
|
|
st.session_state["model"] = (model if defaults.general.no_half else model.half()).to(st.session_state["device"] )
|
|
else:
|
|
config = OmegaConf.load(defaults.general.default_model_config)
|
|
|
|
if custom_model == defaults.general.default_model:
|
|
model = load_model_from_config(config, defaults.general.default_model_path)
|
|
else:
|
|
model = load_model_from_config(config, os.path.join("models","custom", f"{custom_model}.ckpt"))
|
|
|
|
st.session_state["custom_model"] = custom_model
|
|
st.session_state["device"] = torch.device(f"cuda:{defaults.general.gpu}") if torch.cuda.is_available() else torch.device("cpu")
|
|
st.session_state["model"] = (model if defaults.general.no_half else model.half()).to(st.session_state["device"] )
|
|
|
|
print("Model loaded.")
|
|
|
|
|
|
def load_model_from_config(config, ckpt, verbose=False):
|
|
|
|
print(f"Loading model from {ckpt}")
|
|
|
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
|
if "global_step" in pl_sd:
|
|
print(f"Global Step: {pl_sd['global_step']}")
|
|
sd = pl_sd["state_dict"]
|
|
model = instantiate_from_config(config.model)
|
|
m, u = model.load_state_dict(sd, strict=False)
|
|
if len(m) > 0 and verbose:
|
|
print("missing keys:")
|
|
print(m)
|
|
if len(u) > 0 and verbose:
|
|
print("unexpected keys:")
|
|
print(u)
|
|
|
|
model.cuda()
|
|
model.eval()
|
|
return model
|
|
|
|
def load_sd_from_config(ckpt, verbose=False):
|
|
print(f"Loading model from {ckpt}")
|
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
|
if "global_step" in pl_sd:
|
|
print(f"Global Step: {pl_sd['global_step']}")
|
|
sd = pl_sd["state_dict"]
|
|
return sd
|
|
#
|
|
@retry(tries=5)
|
|
def generation_callback(img, i=0):
|
|
|
|
try:
|
|
if i == 0:
|
|
if img['i']: i = img['i']
|
|
except TypeError:
|
|
pass
|
|
|
|
|
|
if i % int(defaults.general.update_preview_frequency) == 0 and defaults.general.update_preview:
|
|
#print (img)
|
|
#print (type(img))
|
|
# The following lines will convert the tensor we got on img to an actual image we can render on the UI.
|
|
# It can probably be done in a better way for someone who knows what they're doing. I don't.
|
|
#print (img,isinstance(img, torch.Tensor))
|
|
if isinstance(img, torch.Tensor):
|
|
x_samples_ddim = (st.session_state["model"] if not defaults.general.optimized else modelFS).decode_first_stage(img)
|
|
else:
|
|
# When using the k Diffusion samplers they return a dict instead of a tensor that look like this:
|
|
# {'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}
|
|
x_samples_ddim = (st.session_state["model"] if not defaults.general.optimized else modelFS).decode_first_stage(img["denoised"])
|
|
|
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
pil_image = transforms.ToPILImage()(x_samples_ddim.squeeze_(0))
|
|
|
|
# update image on the UI so we can see the progress
|
|
st.session_state["preview_image"].image(pil_image)
|
|
|
|
# Show a progress bar so we can keep track of the progress even when the image progress is not been shown,
|
|
# Dont worry, it doesnt affect the performance.
|
|
if st.session_state["generation_mode"] == "txt2img":
|
|
percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps))
|
|
st.session_state["progress_bar_text"].text(
|
|
f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps} {percent if percent < 100 else 100}%")
|
|
else:
|
|
if st.session_state["generation_mode"] == "img2img":
|
|
round_sampling_steps = round(st.session_state.sampling_steps * st.session_state["denoising_strength"])
|
|
percent = int(100 * float(i+1 if i+1 < round_sampling_steps else round_sampling_steps)/float(round_sampling_steps))
|
|
st.session_state["progress_bar_text"].text(
|
|
f"""Running step: {i+1 if i+1 < round_sampling_steps else round_sampling_steps}/{round_sampling_steps} {percent if percent < 100 else 100}%""")
|
|
else:
|
|
if st.session_state["generation_mode"] == "txt2vid":
|
|
percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps))
|
|
st.session_state["progress_bar_text"].text(
|
|
f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps}"
|
|
f"{percent if percent < 100 else 100}%")
|
|
|
|
st.session_state["progress_bar"].progress(percent if percent < 100 else 100)
|
|
|
|
|
|
|
|
class MemUsageMonitor(threading.Thread):
|
|
stop_flag = False
|
|
max_usage = 0
|
|
total = -1
|
|
|
|
def __init__(self, name):
|
|
threading.Thread.__init__(self)
|
|
self.name = name
|
|
|
|
def run(self):
|
|
try:
|
|
pynvml.nvmlInit()
|
|
except:
|
|
print(f"[{self.name}] Unable to initialize NVIDIA management. No memory stats. \n")
|
|
return
|
|
print(f"[{self.name}] Recording max memory usage...\n")
|
|
handle = pynvml.nvmlDeviceGetHandleByIndex(defaults.general.gpu)
|
|
self.total = pynvml.nvmlDeviceGetMemoryInfo(handle).total
|
|
while not self.stop_flag:
|
|
m = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
|
self.max_usage = max(self.max_usage, m.used)
|
|
# print(self.max_usage)
|
|
time.sleep(0.1)
|
|
print(f"[{self.name}] Stopped recording.\n")
|
|
pynvml.nvmlShutdown()
|
|
|
|
def read(self):
|
|
return self.max_usage, self.total
|
|
|
|
def stop(self):
|
|
self.stop_flag = True
|
|
|
|
def read_and_stop(self):
|
|
self.stop_flag = True
|
|
return self.max_usage, self.total
|
|
|
|
class CFGMaskedDenoiser(nn.Module):
|
|
def __init__(self, model):
|
|
super().__init__()
|
|
self.inner_model = model
|
|
|
|
def forward(self, x, sigma, uncond, cond, cond_scale, mask, x0, xi):
|
|
x_in = x
|
|
x_in = torch.cat([x_in] * 2)
|
|
sigma_in = torch.cat([sigma] * 2)
|
|
cond_in = torch.cat([uncond, cond])
|
|
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
|
|
denoised = uncond + (cond - uncond) * cond_scale
|
|
|
|
if mask is not None:
|
|
assert x0 is not None
|
|
img_orig = x0
|
|
mask_inv = 1. - mask
|
|
denoised = (img_orig * mask_inv) + (mask * denoised)
|
|
|
|
return denoised
|
|
|
|
class CFGDenoiser(nn.Module):
|
|
def __init__(self, model):
|
|
super().__init__()
|
|
self.inner_model = model
|
|
|
|
def forward(self, x, sigma, uncond, cond, cond_scale):
|
|
x_in = torch.cat([x] * 2)
|
|
sigma_in = torch.cat([sigma] * 2)
|
|
cond_in = torch.cat([uncond, cond])
|
|
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
|
|
return uncond + (cond - uncond) * cond_scale
|
|
def append_zero(x):
|
|
return torch.cat([x, x.new_zeros([1])])
|
|
def append_dims(x, target_dims):
|
|
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
|
dims_to_append = target_dims - x.ndim
|
|
if dims_to_append < 0:
|
|
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
|
|
return x[(...,) + (None,) * dims_to_append]
|
|
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
|
|
"""Constructs the noise schedule of Karras et al. (2022)."""
|
|
ramp = torch.linspace(0, 1, n)
|
|
min_inv_rho = sigma_min ** (1 / rho)
|
|
max_inv_rho = sigma_max ** (1 / rho)
|
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
|
return append_zero(sigmas).to(device)
|
|
|
|
|
|
def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
|
|
"""Constructs an exponential noise schedule."""
|
|
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
|
|
return append_zero(sigmas)
|
|
|
|
|
|
def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
|
|
"""Constructs a continuous VP noise schedule."""
|
|
t = torch.linspace(1, eps_s, n, device=device)
|
|
sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1)
|
|
return append_zero(sigmas)
|
|
|
|
|
|
def to_d(x, sigma, denoised):
|
|
"""Converts a denoiser output to a Karras ODE derivative."""
|
|
return (x - denoised) / append_dims(sigma, x.ndim)
|
|
def linear_multistep_coeff(order, t, i, j):
|
|
if order - 1 > i:
|
|
raise ValueError(f'Order {order} too high for step {i}')
|
|
def fn(tau):
|
|
prod = 1.
|
|
for k in range(order):
|
|
if j == k:
|
|
continue
|
|
prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
|
|
return prod
|
|
return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]
|
|
|
|
class KDiffusionSampler:
|
|
def __init__(self, m, sampler):
|
|
self.model = m
|
|
self.model_wrap = K.external.CompVisDenoiser(m)
|
|
self.schedule = sampler
|
|
def get_sampler_name(self):
|
|
return self.schedule
|
|
def sample(self, S, conditioning, batch_size, shape, verbose, unconditional_guidance_scale, unconditional_conditioning, eta, x_T, img_callback=None, log_every_t=None):
|
|
sigmas = self.model_wrap.get_sigmas(S)
|
|
x = x_T * sigmas[0]
|
|
model_wrap_cfg = CFGDenoiser(self.model_wrap)
|
|
samples_ddim = None
|
|
samples_ddim = K.sampling.__dict__[f'sample_{self.schedule}'](model_wrap_cfg, x, sigmas,
|
|
extra_args={'cond': conditioning, 'uncond': unconditional_conditioning,
|
|
'cond_scale': unconditional_guidance_scale}, disable=False, callback=generation_callback)
|
|
#
|
|
return samples_ddim, None
|
|
|
|
|
|
@torch.no_grad()
|
|
def log_likelihood(model, x, sigma_min, sigma_max, extra_args=None, atol=1e-4, rtol=1e-4):
|
|
extra_args = {} if extra_args is None else extra_args
|
|
s_in = x.new_ones([x.shape[0]])
|
|
v = torch.randint_like(x, 2) * 2 - 1
|
|
fevals = 0
|
|
def ode_fn(sigma, x):
|
|
nonlocal fevals
|
|
with torch.enable_grad():
|
|
x = x[0].detach().requires_grad_()
|
|
denoised = model(x, sigma * s_in, **extra_args)
|
|
d = to_d(x, sigma, denoised)
|
|
fevals += 1
|
|
grad = torch.autograd.grad((d * v).sum(), x)[0]
|
|
d_ll = (v * grad).flatten(1).sum(1)
|
|
return d.detach(), d_ll
|
|
x_min = x, x.new_zeros([x.shape[0]])
|
|
t = x.new_tensor([sigma_min, sigma_max])
|
|
sol = odeint(ode_fn, x_min, t, atol=atol, rtol=rtol, method='dopri5')
|
|
latent, delta_ll = sol[0][-1], sol[1][-1]
|
|
ll_prior = torch.distributions.Normal(0, sigma_max).log_prob(latent).flatten(1).sum(1)
|
|
return ll_prior + delta_ll, {'fevals': fevals}
|
|
|
|
|
|
def create_random_tensors(shape, seeds):
|
|
xs = []
|
|
for seed in seeds:
|
|
torch.manual_seed(seed)
|
|
|
|
# randn results depend on device; gpu and cpu get different results for same seed;
|
|
# the way I see it, it's better to do this on CPU, so that everyone gets same result;
|
|
# but the original script had it like this so i do not dare change it for now because
|
|
# it will break everyone's seeds.
|
|
xs.append(torch.randn(shape, device=defaults.general.gpu))
|
|
x = torch.stack(xs)
|
|
return x
|
|
|
|
def torch_gc():
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.ipc_collect()
|
|
|
|
def load_GFPGAN():
|
|
model_name = 'GFPGANv1.3'
|
|
model_path = os.path.join(defaults.general.GFPGAN_dir, 'experiments/pretrained_models', model_name + '.pth')
|
|
if not os.path.isfile(model_path):
|
|
raise Exception("GFPGAN model not found at path "+model_path)
|
|
|
|
sys.path.append(os.path.abspath(defaults.general.GFPGAN_dir))
|
|
from gfpgan import GFPGANer
|
|
|
|
if defaults.general.gfpgan_cpu or defaults.general.extra_models_cpu:
|
|
instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cpu'))
|
|
elif defaults.general.extra_models_gpu:
|
|
instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device(f'cuda:{defaults.general.gfpgan_gpu}'))
|
|
else:
|
|
instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device(f'cuda:{defaults.general.gpu}'))
|
|
return instance
|
|
|
|
def load_RealESRGAN(model_name: str):
|
|
from basicsr.archs.rrdbnet_arch import RRDBNet
|
|
RealESRGAN_models = {
|
|
'RealESRGAN_x4plus': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4),
|
|
'RealESRGAN_x4plus_anime_6B': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
|
}
|
|
|
|
model_path = os.path.join(defaults.general.RealESRGAN_dir, 'experiments/pretrained_models', model_name + '.pth')
|
|
if not os.path.exists(os.path.join(defaults.general.RealESRGAN_dir, "experiments","pretrained_models", f"{model_name}.pth")):
|
|
raise Exception(model_name+".pth not found at path "+model_path)
|
|
|
|
sys.path.append(os.path.abspath(defaults.general.RealESRGAN_dir))
|
|
from realesrgan import RealESRGANer
|
|
|
|
if defaults.general.esrgan_cpu or defaults.general.extra_models_cpu:
|
|
instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=False) # cpu does not support half
|
|
instance.device = torch.device('cpu')
|
|
instance.model.to('cpu')
|
|
elif defaults.general.extra_models_gpu:
|
|
instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=not defaults.general.no_half, device=torch.device(f'cuda:{defaults.general.esrgan_gpu}'))
|
|
else:
|
|
instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=not defaults.general.no_half, device=torch.device(f'cuda:{defaults.general.gpu}'))
|
|
instance.model.name = model_name
|
|
|
|
return instance
|
|
|
|
prompt_parser = re.compile("""
|
|
(?P<prompt> # capture group for 'prompt'
|
|
[^:]+ # match one or more non ':' characters
|
|
) # end 'prompt'
|
|
(?: # non-capture group
|
|
:+ # match one or more ':' characters
|
|
(?P<weight> # capture group for 'weight'
|
|
-?\\d+(?:\\.\\d+)? # match positive or negative decimal number
|
|
)? # end weight capture group, make optional
|
|
\\s* # strip spaces after weight
|
|
| # OR
|
|
$ # else, if no ':' then match end of line
|
|
) # end non-capture group
|
|
""", re.VERBOSE)
|
|
|
|
# grabs all text up to the first occurrence of ':' as sub-prompt
|
|
# takes the value following ':' as weight
|
|
# if ':' has no value defined, defaults to 1.0
|
|
# repeats until no text remaining
|
|
def split_weighted_subprompts(input_string, normalize=True):
|
|
parsed_prompts = [(match.group("prompt"), float(match.group("weight") or 1)) for match in re.finditer(prompt_parser, input_string)]
|
|
if not normalize:
|
|
return parsed_prompts
|
|
# this probably still doesn't handle negative weights very well
|
|
weight_sum = sum(map(lambda x: x[1], parsed_prompts))
|
|
return [(x[0], x[1] / weight_sum) for x in parsed_prompts]
|
|
|
|
def slerp(device, t, v0:torch.Tensor, v1:torch.Tensor, DOT_THRESHOLD=0.9995):
|
|
v0 = v0.detach().cpu().numpy()
|
|
v1 = v1.detach().cpu().numpy()
|
|
|
|
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
|
if np.abs(dot) > DOT_THRESHOLD:
|
|
v2 = (1 - t) * v0 + t * v1
|
|
else:
|
|
theta_0 = np.arccos(dot)
|
|
sin_theta_0 = np.sin(theta_0)
|
|
theta_t = theta_0 * t
|
|
sin_theta_t = np.sin(theta_t)
|
|
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
|
s1 = sin_theta_t / sin_theta_0
|
|
v2 = s0 * v0 + s1 * v1
|
|
|
|
v2 = torch.from_numpy(v2).to(device)
|
|
|
|
return v2
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
@torch.no_grad()
|
|
def diffuse(
|
|
pipe,
|
|
cond_embeddings, # text conditioning, should be (1, 77, 768)
|
|
cond_latents, # image conditioning, should be (1, 4, 64, 64)
|
|
num_inference_steps,
|
|
guidance_scale,
|
|
eta,
|
|
):
|
|
|
|
torch_device = cond_latents.get_device()
|
|
|
|
# classifier guidance: add the unconditional embedding
|
|
max_length = cond_embeddings.shape[1] # 77
|
|
uncond_input = pipe.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt")
|
|
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
|
text_embeddings = torch.cat([uncond_embeddings, cond_embeddings])
|
|
|
|
# if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas
|
|
if isinstance(pipe.scheduler, LMSDiscreteScheduler):
|
|
cond_latents = cond_latents * pipe.scheduler.sigmas[0]
|
|
|
|
# init the scheduler
|
|
accepts_offset = "offset" in set(inspect.signature(pipe.scheduler.set_timesteps).parameters.keys())
|
|
extra_set_kwargs = {}
|
|
if accepts_offset:
|
|
extra_set_kwargs["offset"] = 1
|
|
pipe.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
|
# and should be between [0, 1]
|
|
accepts_eta = "eta" in set(inspect.signature(pipe.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
|
|
step_counter = 0
|
|
|
|
# diffuse!
|
|
for i, t in enumerate(pipe.scheduler.timesteps):
|
|
|
|
# expand the latents for classifier free guidance
|
|
latent_model_input = torch.cat([cond_latents] * 2)
|
|
if isinstance(pipe.scheduler, LMSDiscreteScheduler):
|
|
sigma = pipe.scheduler.sigmas[i]
|
|
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
|
|
|
|
# predict the noise residual
|
|
noise_pred = pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
|
|
|
# cfg
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
if isinstance(pipe.scheduler, LMSDiscreteScheduler):
|
|
cond_latents = pipe.scheduler.step(noise_pred, i, cond_latents, **extra_step_kwargs)["prev_sample"]
|
|
else:
|
|
cond_latents = pipe.scheduler.step(noise_pred, t, cond_latents, **extra_step_kwargs)["prev_sample"]
|
|
|
|
|
|
#update the preview image if it is enabled and the frequency matches the step_counter
|
|
#if st.session_state["update_preview"]:
|
|
# if st.session_state["update_preview_frequency"] == step_counter:
|
|
# scale and decode the image latents with vae
|
|
cond_latents_2 = 1 / 0.18215 * cond_latents
|
|
image_2 = pipe.vae.decode(cond_latents_2)
|
|
|
|
# generate output numpy image as uint8
|
|
image_2 = (image_2 / 2 + 0.5).clamp(0, 1)
|
|
image_2 = image_2.cpu().permute(0, 2, 3, 1).numpy()
|
|
image_2 = (image_2[0] * 255).astype(np.uint8)
|
|
|
|
st.session_state["preview_image"].image(image_2)
|
|
#step_counter = 0
|
|
|
|
percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps))
|
|
frames_percent = int(100 * float(st.session_state.current_frame if st.session_state.current_frame < st.session_state.max_frames else st.session_state.max_frames)/float(st.session_state.max_frames))
|
|
|
|
st.session_state["progress_bar_text"].text(
|
|
f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps} "
|
|
f"{percent if percent < 100 else 100}% "
|
|
f"Frame: {st.session_state.current_frame if st.session_state.current_frame < st.session_state.max_frames else st.session_state.max_frames}/{st.session_state.max_frames} "
|
|
f"{frames_percent if frames_percent < 100 else 100}% "
|
|
)
|
|
st.session_state["progress_bar"].progress(percent if percent < 100 else 100)
|
|
|
|
# scale and decode the image latents with vae
|
|
cond_latents = 1 / 0.18215 * cond_latents
|
|
image = pipe.vae.decode(cond_latents)
|
|
|
|
# generate output numpy image as uint8
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
|
image = (image[0] * 255).astype(np.uint8)
|
|
|
|
return image
|
|
|
|
|
|
def ModelLoader(models,load=False,unload=False,imgproc_realesrgan_model_name='RealESRGAN_x4plus'):
|
|
#get global variables
|
|
global_vars = globals()
|
|
#check if m is in globals
|
|
if unload:
|
|
for m in models:
|
|
if m in global_vars:
|
|
#if it is, delete it
|
|
del global_vars[m]
|
|
if defaults.general.optimized:
|
|
if m == 'model':
|
|
del global_vars[m+'FS']
|
|
del global_vars[m+'CS']
|
|
if m =='model':
|
|
m='Stable Diffusion'
|
|
print('Unloaded ' + m)
|
|
if load:
|
|
for m in models:
|
|
if m not in global_vars or m in global_vars and type(global_vars[m]) == bool:
|
|
#if it isn't, load it
|
|
if m == 'GFPGAN':
|
|
global_vars[m] = load_GFPGAN()
|
|
elif m == 'model':
|
|
sdLoader = load_sd_from_config()
|
|
global_vars[m] = sdLoader[0]
|
|
if defaults.general.optimized:
|
|
global_vars[m+'CS'] = sdLoader[1]
|
|
global_vars[m+'FS'] = sdLoader[2]
|
|
elif m == 'RealESRGAN':
|
|
global_vars[m] = load_RealESRGAN(imgproc_realesrgan_model_name)
|
|
elif m == 'LDSR':
|
|
global_vars[m] = load_LDSR()
|
|
if m =='model':
|
|
m='Stable Diffusion'
|
|
print('Loaded ' + m)
|
|
torch_gc()
|
|
|
|
|
|
|
|
def get_font(fontsize):
|
|
fonts = ["arial.ttf", "DejaVuSans.ttf"]
|
|
for font_name in fonts:
|
|
try:
|
|
return ImageFont.truetype(font_name, fontsize)
|
|
except OSError:
|
|
pass
|
|
|
|
# ImageFont.load_default() is practically unusable as it only supports
|
|
# latin1, so raise an exception instead if no usable font was found
|
|
raise Exception(f"No usable font found (tried {', '.join(fonts)})")
|
|
|
|
def load_embeddings(fp):
|
|
if fp is not None and hasattr(st.session_state["model"], "embedding_manager"):
|
|
st.session_state["model"].embedding_manager.load(fp['name'])
|
|
|
|
def image_grid(imgs, batch_size, force_n_rows=None, captions=None):
|
|
#print (len(imgs))
|
|
if force_n_rows is not None:
|
|
rows = force_n_rows
|
|
elif defaults.general.n_rows > 0:
|
|
rows = defaults.general.n_rows
|
|
elif defaults.general.n_rows == 0:
|
|
rows = batch_size
|
|
else:
|
|
rows = math.sqrt(len(imgs))
|
|
rows = round(rows)
|
|
|
|
cols = math.ceil(len(imgs) / rows)
|
|
|
|
w, h = imgs[0].size
|
|
grid = Image.new('RGB', size=(cols * w, rows * h), color='black')
|
|
|
|
fnt = get_font(30)
|
|
|
|
for i, img in enumerate(imgs):
|
|
grid.paste(img, box=(i % cols * w, i // cols * h))
|
|
if captions and i<len(captions):
|
|
d = ImageDraw.Draw( grid )
|
|
size = d.textbbox( (0,0), captions[i], font=fnt, stroke_width=2, align="center" )
|
|
d.multiline_text((i % cols * w + w/2, i // cols * h + h - size[3]), captions[i], font=fnt, fill=(255,255,255), stroke_width=2, stroke_fill=(0,0,0), anchor="mm", align="center")
|
|
|
|
return grid
|
|
|
|
def seed_to_int(s):
|
|
if type(s) is int:
|
|
return s
|
|
if s is None or s == '':
|
|
return random.randint(0, 2**32 - 1)
|
|
n = abs(int(s) if s.isdigit() else random.Random(s).randint(0, 2**32 - 1))
|
|
while n >= 2**32:
|
|
n = n >> 32
|
|
return n
|
|
|
|
def check_prompt_length(prompt, comments):
|
|
"""this function tests if prompt is too long, and if so, adds a message to comments"""
|
|
|
|
tokenizer = (st.session_state["model"] if not defaults.general.optimized else modelCS).cond_stage_model.tokenizer
|
|
max_length = (st.session_state["model"] if not defaults.general.optimized else modelCS).cond_stage_model.max_length
|
|
|
|
info = (st.session_state["model"] if not defaults.general.optimized else modelCS).cond_stage_model.tokenizer([prompt], truncation=True, max_length=max_length,
|
|
return_overflowing_tokens=True, padding="max_length", return_tensors="pt")
|
|
ovf = info['overflowing_tokens'][0]
|
|
overflowing_count = ovf.shape[0]
|
|
if overflowing_count == 0:
|
|
return
|
|
|
|
vocab = {v: k for k, v in tokenizer.get_vocab().items()}
|
|
overflowing_words = [vocab.get(int(x), "") for x in ovf]
|
|
overflowing_text = tokenizer.convert_tokens_to_string(''.join(overflowing_words))
|
|
|
|
comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
|
|
|
|
def save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
|
|
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback,
|
|
save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images):
|
|
|
|
filename_i = os.path.join(sample_path_i, filename)
|
|
|
|
if not jpg_sample:
|
|
if defaults.general.save_metadata:
|
|
metadata = PngInfo()
|
|
metadata.add_text("SD:prompt", prompts[i])
|
|
metadata.add_text("SD:seed", str(seeds[i]))
|
|
metadata.add_text("SD:width", str(width))
|
|
metadata.add_text("SD:height", str(height))
|
|
metadata.add_text("SD:steps", str(steps))
|
|
metadata.add_text("SD:cfg_scale", str(cfg_scale))
|
|
metadata.add_text("SD:normalize_prompt_weights", str(normalize_prompt_weights))
|
|
if init_img is not None:
|
|
metadata.add_text("SD:denoising_strength", str(denoising_strength))
|
|
metadata.add_text("SD:GFPGAN", str(use_GFPGAN and st.session_state["GFPGAN"] is not None))
|
|
image.save(f"{filename_i}.png", pnginfo=metadata)
|
|
else:
|
|
image.save(f"{filename_i}.png")
|
|
else:
|
|
image.save(f"{filename_i}.jpg", 'jpeg', quality=100, optimize=True)
|
|
|
|
if write_info_files:
|
|
# toggles differ for txt2img vs. img2img:
|
|
offset = 0 if init_img is None else 2
|
|
toggles = []
|
|
if prompt_matrix:
|
|
toggles.append(0)
|
|
if normalize_prompt_weights:
|
|
toggles.append(1)
|
|
if init_img is not None:
|
|
if uses_loopback:
|
|
toggles.append(2)
|
|
if uses_random_seed_loopback:
|
|
toggles.append(3)
|
|
if save_individual_images:
|
|
toggles.append(2 + offset)
|
|
if save_grid:
|
|
toggles.append(3 + offset)
|
|
if sort_samples:
|
|
toggles.append(4 + offset)
|
|
if write_info_files:
|
|
toggles.append(5 + offset)
|
|
if use_GFPGAN:
|
|
toggles.append(6 + offset)
|
|
info_dict = dict(
|
|
target="txt2img" if init_img is None else "img2img",
|
|
prompt=prompts[i], ddim_steps=steps, toggles=toggles, sampler_name=sampler_name,
|
|
ddim_eta=ddim_eta, n_iter=n_iter, batch_size=batch_size, cfg_scale=cfg_scale,
|
|
seed=seeds[i], width=width, height=height
|
|
)
|
|
if init_img is not None:
|
|
# Not yet any use for these, but they bloat up the files:
|
|
#info_dict["init_img"] = init_img
|
|
#info_dict["init_mask"] = init_mask
|
|
info_dict["denoising_strength"] = denoising_strength
|
|
info_dict["resize_mode"] = resize_mode
|
|
with open(f"{filename_i}.yaml", "w", encoding="utf8") as f:
|
|
yaml.dump(info_dict, f, allow_unicode=True, width=10000)
|
|
|
|
# render the image on the frontend
|
|
st.session_state["preview_image"].image(image)
|
|
|
|
def get_next_sequence_number(path, prefix=''):
|
|
"""
|
|
Determines and returns the next sequence number to use when saving an
|
|
image in the specified directory.
|
|
|
|
If a prefix is given, only consider files whose names start with that
|
|
prefix, and strip the prefix from filenames before extracting their
|
|
sequence number.
|
|
|
|
The sequence starts at 0.
|
|
"""
|
|
result = -1
|
|
for p in Path(path).iterdir():
|
|
if p.name.endswith(('.png', '.jpg')) and p.name.startswith(prefix):
|
|
tmp = p.name[len(prefix):]
|
|
try:
|
|
result = max(int(tmp.split('-')[0]), result)
|
|
except ValueError:
|
|
pass
|
|
return result + 1
|
|
|
|
|
|
def oxlamon_matrix(prompt, seed, n_iter, batch_size):
|
|
pattern = re.compile(r'(,\s){2,}')
|
|
|
|
class PromptItem:
|
|
def __init__(self, text, parts, item):
|
|
self.text = text
|
|
self.parts = parts
|
|
if item:
|
|
self.parts.append( item )
|
|
|
|
def clean(txt):
|
|
return re.sub(pattern, ', ', txt)
|
|
|
|
def getrowcount( txt ):
|
|
for data in re.finditer( ".*?\\((.*?)\\).*", txt ):
|
|
if data:
|
|
return len(data.group(1).split("|"))
|
|
break
|
|
return None
|
|
|
|
def repliter( txt ):
|
|
for data in re.finditer( ".*?\\((.*?)\\).*", txt ):
|
|
if data:
|
|
r = data.span(1)
|
|
for item in data.group(1).split("|"):
|
|
yield (clean(txt[:r[0]-1] + item.strip() + txt[r[1]+1:]), item.strip())
|
|
break
|
|
|
|
def iterlist( items ):
|
|
outitems = []
|
|
for item in items:
|
|
for newitem, newpart in repliter(item.text):
|
|
outitems.append( PromptItem(newitem, item.parts.copy(), newpart) )
|
|
|
|
return outitems
|
|
|
|
def getmatrix( prompt ):
|
|
dataitems = [ PromptItem( prompt[1:].strip(), [], None ) ]
|
|
while True:
|
|
newdataitems = iterlist( dataitems )
|
|
if len( newdataitems ) == 0:
|
|
return dataitems
|
|
dataitems = newdataitems
|
|
|
|
def classToArrays( items, seed, n_iter ):
|
|
texts = []
|
|
parts = []
|
|
seeds = []
|
|
|
|
for item in items:
|
|
itemseed = seed
|
|
for i in range(n_iter):
|
|
texts.append( item.text )
|
|
parts.append( f"Seed: {itemseed}\n" + "\n".join(item.parts) )
|
|
seeds.append( itemseed )
|
|
itemseed += 1
|
|
|
|
return seeds, texts, parts
|
|
|
|
all_seeds, all_prompts, prompt_matrix_parts = classToArrays(getmatrix( prompt ), seed, n_iter)
|
|
n_iter = math.ceil(len(all_prompts) / batch_size)
|
|
|
|
needrows = getrowcount(prompt)
|
|
if needrows:
|
|
xrows = math.sqrt(len(all_prompts))
|
|
xrows = round(xrows)
|
|
# if columns is to much
|
|
cols = math.ceil(len(all_prompts) / xrows)
|
|
if cols > needrows*4:
|
|
needrows *= 2
|
|
|
|
return all_seeds, n_iter, prompt_matrix_parts, all_prompts, needrows
|
|
|
|
|
|
def process_images(
|
|
outpath, func_init, func_sample, prompt, seed, sampler_name, save_grid, batch_size,
|
|
n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN, use_RealESRGAN, realesrgan_model_name,
|
|
fp=None, ddim_eta=0.0, normalize_prompt_weights=True, init_img=None, init_mask=None,
|
|
keep_mask=False, mask_blur_strength=3, denoising_strength=0.75, resize_mode=None, uses_loopback=False,
|
|
uses_random_seed_loopback=False, sort_samples=True, write_info_files=True, jpg_sample=False,
|
|
variant_amount=0.0, variant_seed=None, save_individual_images: bool = True):
|
|
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
|
assert prompt is not None
|
|
torch_gc()
|
|
# start time after garbage collection (or before?)
|
|
start_time = time.time()
|
|
|
|
# We will use this date here later for the folder name, need to start_time if not need
|
|
run_start_dt = datetime.datetime.now()
|
|
|
|
mem_mon = MemUsageMonitor('MemMon')
|
|
mem_mon.start()
|
|
|
|
if hasattr(st.session_state["model"], "embedding_manager"):
|
|
load_embeddings(fp)
|
|
|
|
os.makedirs(outpath, exist_ok=True)
|
|
|
|
sample_path = os.path.join(outpath, "samples")
|
|
os.makedirs(sample_path, exist_ok=True)
|
|
|
|
if not ("|" in prompt) and prompt.startswith("@"):
|
|
prompt = prompt[1:]
|
|
|
|
comments = []
|
|
|
|
prompt_matrix_parts = []
|
|
simple_templating = False
|
|
add_original_image = not (use_RealESRGAN or use_GFPGAN)
|
|
|
|
if prompt_matrix:
|
|
if prompt.startswith("@"):
|
|
simple_templating = True
|
|
add_original_image = not (use_RealESRGAN or use_GFPGAN)
|
|
all_seeds, n_iter, prompt_matrix_parts, all_prompts, frows = oxlamon_matrix(prompt, seed, n_iter, batch_size)
|
|
else:
|
|
all_prompts = []
|
|
prompt_matrix_parts = prompt.split("|")
|
|
combination_count = 2 ** (len(prompt_matrix_parts) - 1)
|
|
for combination_num in range(combination_count):
|
|
current = prompt_matrix_parts[0]
|
|
|
|
for n, text in enumerate(prompt_matrix_parts[1:]):
|
|
if combination_num & (2 ** n) > 0:
|
|
current += ("" if text.strip().startswith(",") else ", ") + text
|
|
|
|
all_prompts.append(current)
|
|
|
|
n_iter = math.ceil(len(all_prompts) / batch_size)
|
|
all_seeds = len(all_prompts) * [seed]
|
|
|
|
print(f"Prompt matrix will create {len(all_prompts)} images using a total of {n_iter} batches.")
|
|
else:
|
|
|
|
if not defaults.general.no_verify_input:
|
|
try:
|
|
check_prompt_length(prompt, comments)
|
|
except:
|
|
import traceback
|
|
print("Error verifying input:", file=sys.stderr)
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
|
|
all_prompts = batch_size * n_iter * [prompt]
|
|
all_seeds = [seed + x for x in range(len(all_prompts))]
|
|
|
|
precision_scope = autocast if defaults.general.precision == "autocast" else nullcontext
|
|
output_images = []
|
|
grid_captions = []
|
|
stats = []
|
|
with torch.no_grad(), precision_scope("cuda"), (st.session_state["model"].ema_scope() if not defaults.general.optimized else nullcontext()):
|
|
init_data = func_init()
|
|
tic = time.time()
|
|
|
|
|
|
# if variant_amount > 0.0 create noise from base seed
|
|
base_x = None
|
|
if variant_amount > 0.0:
|
|
target_seed_randomizer = seed_to_int('') # random seed
|
|
torch.manual_seed(seed) # this has to be the single starting seed (not per-iteration)
|
|
base_x = create_random_tensors([opt_C, height // opt_f, width // opt_f], seeds=[seed])
|
|
# we don't want all_seeds to be sequential from starting seed with variants,
|
|
# since that makes the same variants each time,
|
|
# so we add target_seed_randomizer as a random offset
|
|
for si in range(len(all_seeds)):
|
|
all_seeds[si] += target_seed_randomizer
|
|
|
|
for n in range(n_iter):
|
|
print(f"Iteration: {n+1}/{n_iter}")
|
|
prompts = all_prompts[n * batch_size:(n + 1) * batch_size]
|
|
captions = prompt_matrix_parts[n * batch_size:(n + 1) * batch_size]
|
|
seeds = all_seeds[n * batch_size:(n + 1) * batch_size]
|
|
|
|
print(prompt)
|
|
|
|
if defaults.general.optimized:
|
|
modelCS.to(defaults.general.gpu)
|
|
|
|
uc = (st.session_state["model"] if not defaults.general.optimized else modelCS).get_learned_conditioning(len(prompts) * [""])
|
|
|
|
if isinstance(prompts, tuple):
|
|
prompts = list(prompts)
|
|
|
|
# split the prompt if it has : for weighting
|
|
# TODO for speed it might help to have this occur when all_prompts filled??
|
|
weighted_subprompts = split_weighted_subprompts(prompts[0], normalize_prompt_weights)
|
|
|
|
# sub-prompt weighting used if more than 1
|
|
if len(weighted_subprompts) > 1:
|
|
c = torch.zeros_like(uc) # i dont know if this is correct.. but it works
|
|
for i in range(0, len(weighted_subprompts)):
|
|
# note if alpha negative, it functions same as torch.sub
|
|
c = torch.add(c, (st.session_state["model"] if not defaults.general.optimized else modelCS).get_learned_conditioning(weighted_subprompts[i][0]), alpha=weighted_subprompts[i][1])
|
|
else: # just behave like usual
|
|
c = (st.session_state["model"] if not defaults.general.optimized else modelCS).get_learned_conditioning(prompts)
|
|
|
|
|
|
shape = [opt_C, height // opt_f, width // opt_f]
|
|
|
|
if defaults.general.optimized:
|
|
mem = torch.cuda.memory_allocated()/1e6
|
|
modelCS.to("cpu")
|
|
while(torch.cuda.memory_allocated()/1e6 >= mem):
|
|
time.sleep(1)
|
|
|
|
if variant_amount == 0.0:
|
|
# we manually generate all input noises because each one should have a specific seed
|
|
x = create_random_tensors(shape, seeds=seeds)
|
|
|
|
else: # we are making variants
|
|
# using variant_seed as sneaky toggle,
|
|
# when not None or '' use the variant_seed
|
|
# otherwise use seeds
|
|
if variant_seed != None and variant_seed != '':
|
|
specified_variant_seed = seed_to_int(variant_seed)
|
|
torch.manual_seed(specified_variant_seed)
|
|
seeds = [specified_variant_seed]
|
|
target_x = create_random_tensors(shape, seeds=seeds)
|
|
# finally, slerp base_x noise to target_x noise for creating a variant
|
|
x = slerp(defaults.general.gpu, max(0.0, min(1.0, variant_amount)), base_x, target_x)
|
|
|
|
samples_ddim = func_sample(init_data=init_data, x=x, conditioning=c, unconditional_conditioning=uc, sampler_name=sampler_name)
|
|
|
|
if defaults.general.optimized:
|
|
modelFS.to(defaults.general.gpu)
|
|
|
|
x_samples_ddim = (st.session_state["model"] if not defaults.general.optimized else modelFS).decode_first_stage(samples_ddim)
|
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
for i, x_sample in enumerate(x_samples_ddim):
|
|
sanitized_prompt = slugify(prompts[i])
|
|
|
|
if sort_samples:
|
|
full_path = os.path.join(os.getcwd(), sample_path, sanitized_prompt)
|
|
|
|
|
|
sanitized_prompt = sanitized_prompt[:220-len(full_path)]
|
|
sample_path_i = os.path.join(sample_path, sanitized_prompt)
|
|
|
|
#print(f"output folder length: {len(os.path.join(os.getcwd(), sample_path_i))}")
|
|
#print(os.path.join(os.getcwd(), sample_path_i))
|
|
|
|
os.makedirs(sample_path_i, exist_ok=True)
|
|
base_count = get_next_sequence_number(sample_path_i)
|
|
filename = f"{base_count:05}-{steps}_{sampler_name}_{seeds[i]}"
|
|
else:
|
|
full_path = os.path.join(os.getcwd(), sample_path)
|
|
sample_path_i = sample_path
|
|
base_count = get_next_sequence_number(sample_path_i)
|
|
filename = f"{base_count:05}-{steps}_{sampler_name}_{seeds[i]}_{sanitized_prompt}"[:220-len(full_path)] #same as before
|
|
|
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
|
x_sample = x_sample.astype(np.uint8)
|
|
image = Image.fromarray(x_sample)
|
|
original_sample = x_sample
|
|
original_filename = filename
|
|
|
|
if use_GFPGAN and st.session_state["GFPGAN"] is not None and not use_RealESRGAN:
|
|
#skip_save = True # #287 >_>
|
|
torch_gc()
|
|
cropped_faces, restored_faces, restored_img = st.session_state["GFPGAN"].enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
|
|
gfpgan_sample = restored_img[:,:,::-1]
|
|
gfpgan_image = Image.fromarray(gfpgan_sample)
|
|
gfpgan_filename = original_filename + '-gfpgan'
|
|
|
|
save_sample(gfpgan_image, sample_path_i, gfpgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
|
|
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback,
|
|
uses_random_seed_loopback, save_grid, sort_samples, sampler_name, ddim_eta,
|
|
n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images=False)
|
|
|
|
output_images.append(gfpgan_image) #287
|
|
if simple_templating:
|
|
grid_captions.append( captions[i] + "\ngfpgan" )
|
|
|
|
if use_RealESRGAN and st.session_state["RealESRGAN"] is not None and not use_GFPGAN:
|
|
#skip_save = True # #287 >_>
|
|
torch_gc()
|
|
|
|
if st.session_state["RealESRGAN"].model.name != realesrgan_model_name:
|
|
#try_loading_RealESRGAN(realesrgan_model_name)
|
|
load_models(use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, RealESRGAN_model=realesrgan_model_name)
|
|
|
|
output, img_mode = st.session_state["RealESRGAN"].enhance(x_sample[:,:,::-1])
|
|
esrgan_filename = original_filename + '-esrgan4x'
|
|
esrgan_sample = output[:,:,::-1]
|
|
esrgan_image = Image.fromarray(esrgan_sample)
|
|
|
|
#save_sample(image, sample_path_i, original_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
|
|
#normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
|
|
#save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode)
|
|
|
|
save_sample(esrgan_image, sample_path_i, esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
|
|
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback,
|
|
save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images=False)
|
|
|
|
output_images.append(esrgan_image) #287
|
|
if simple_templating:
|
|
grid_captions.append( captions[i] + "\nesrgan" )
|
|
|
|
if use_RealESRGAN and st.session_state["RealESRGAN"] is not None and use_GFPGAN and st.session_state["GFPGAN"] is not None:
|
|
#skip_save = True # #287 >_>
|
|
torch_gc()
|
|
cropped_faces, restored_faces, restored_img = st.session_state["GFPGAN"].enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
|
|
gfpgan_sample = restored_img[:,:,::-1]
|
|
|
|
if st.session_state["RealESRGAN"].model.name != realesrgan_model_name:
|
|
#try_loading_RealESRGAN(realesrgan_model_name)
|
|
load_models(use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, RealESRGAN_model=realesrgan_model_name)
|
|
|
|
output, img_mode = st.session_state["RealESRGAN"].enhance(gfpgan_sample[:,:,::-1])
|
|
gfpgan_esrgan_filename = original_filename + '-gfpgan-esrgan4x'
|
|
gfpgan_esrgan_sample = output[:,:,::-1]
|
|
gfpgan_esrgan_image = Image.fromarray(gfpgan_esrgan_sample)
|
|
|
|
save_sample(gfpgan_esrgan_image, sample_path_i, gfpgan_esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
|
|
normalize_prompt_weights, False, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback,
|
|
save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images=False)
|
|
|
|
output_images.append(gfpgan_esrgan_image) #287
|
|
|
|
if simple_templating:
|
|
grid_captions.append( captions[i] + "\ngfpgan_esrgan" )
|
|
|
|
if save_individual_images:
|
|
save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
|
|
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback,
|
|
save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images)
|
|
|
|
if not use_GFPGAN or not use_RealESRGAN:
|
|
output_images.append(image)
|
|
|
|
#if add_original_image or not simple_templating:
|
|
#output_images.append(image)
|
|
#if simple_templating:
|
|
#grid_captions.append( captions[i] )
|
|
|
|
if defaults.general.optimized:
|
|
mem = torch.cuda.memory_allocated()/1e6
|
|
modelFS.to("cpu")
|
|
while(torch.cuda.memory_allocated()/1e6 >= mem):
|
|
time.sleep(1)
|
|
|
|
if prompt_matrix or save_grid:
|
|
if prompt_matrix:
|
|
if simple_templating:
|
|
grid = image_grid(output_images, n_iter, force_n_rows=frows, captions=grid_captions)
|
|
else:
|
|
grid = image_grid(output_images, n_iter, force_n_rows=1 << ((len(prompt_matrix_parts)-1)//2))
|
|
try:
|
|
grid = draw_prompt_matrix(grid, width, height, prompt_matrix_parts)
|
|
except:
|
|
import traceback
|
|
print("Error creating prompt_matrix text:", file=sys.stderr)
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
else:
|
|
grid = image_grid(output_images, batch_size)
|
|
|
|
if grid and (batch_size > 1 or n_iter > 1):
|
|
output_images.insert(0, grid)
|
|
|
|
grid_count = get_next_sequence_number(outpath, 'grid-')
|
|
grid_file = f"grid-{grid_count:05}-{seed}_{slugify(prompts[i].replace(' ', '_')[:220-len(full_path)])}.{grid_ext}"
|
|
grid.save(os.path.join(outpath, grid_file), grid_format, quality=grid_quality, lossless=grid_lossless, optimize=True)
|
|
|
|
toc = time.time()
|
|
|
|
mem_max_used, mem_total = mem_mon.read_and_stop()
|
|
time_diff = time.time()-start_time
|
|
|
|
info = f"""
|
|
{prompt}
|
|
Steps: {steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', Denoising strength: '+str(denoising_strength) if init_img is not None else ''}{', GFPGAN' if use_GFPGAN and st.session_state["GFPGAN"] is not None else ''}{', '+realesrgan_model_name if use_RealESRGAN and st.session_state["RealESRGAN"] is not None else ''}{', Prompt Matrix Mode.' if prompt_matrix else ''}""".strip()
|
|
stats = f'''
|
|
Took { round(time_diff, 2) }s total ({ round(time_diff/(len(all_prompts)),2) }s per image)
|
|
Peak memory usage: { -(mem_max_used // -1_048_576) } MiB / { -(mem_total // -1_048_576) } MiB / { round(mem_max_used/mem_total*100, 3) }%'''
|
|
|
|
for comment in comments:
|
|
info += "\n\n" + comment
|
|
|
|
#mem_mon.stop()
|
|
#del mem_mon
|
|
torch_gc()
|
|
|
|
return output_images, seed, info, stats
|
|
|
|
|
|
def resize_image(resize_mode, im, width, height):
|
|
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
|
|
if resize_mode == 0:
|
|
res = im.resize((width, height), resample=LANCZOS)
|
|
elif resize_mode == 1:
|
|
ratio = width / height
|
|
src_ratio = im.width / im.height
|
|
|
|
src_w = width if ratio > src_ratio else im.width * height // im.height
|
|
src_h = height if ratio <= src_ratio else im.height * width // im.width
|
|
|
|
resized = im.resize((src_w, src_h), resample=LANCZOS)
|
|
res = Image.new("RGBA", (width, height))
|
|
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
|
|
else:
|
|
ratio = width / height
|
|
src_ratio = im.width / im.height
|
|
|
|
src_w = width if ratio < src_ratio else im.width * height // im.height
|
|
src_h = height if ratio >= src_ratio else im.height * width // im.width
|
|
|
|
resized = im.resize((src_w, src_h), resample=LANCZOS)
|
|
res = Image.new("RGBA", (width, height))
|
|
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
|
|
|
|
if ratio < src_ratio:
|
|
fill_height = height // 2 - src_h // 2
|
|
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
|
|
res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h))
|
|
elif ratio > src_ratio:
|
|
fill_width = width // 2 - src_w // 2
|
|
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
|
|
res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0))
|
|
|
|
return res
|
|
|
|
def img2img(prompt: str = '', init_info: any = None, init_info_mask: any = None, mask_mode: int = 0, mask_blur_strength: int = 3,
|
|
ddim_steps: int = 50, sampler_name: str = 'DDIM',
|
|
n_iter: int = 1, cfg_scale: float = 7.5, denoising_strength: float = 0.8,
|
|
seed: int = -1, height: int = 512, width: int = 512, resize_mode: int = 0, fp = None,
|
|
variant_amount: float = None, variant_seed: int = None, ddim_eta:float = 0.0,
|
|
write_info_files:bool = True, RealESRGAN_model: str = "RealESRGAN_x4plus_anime_6B",
|
|
separate_prompts:bool = False, normalize_prompt_weights:bool = True,
|
|
save_individual_images: bool = True, save_grid: bool = True, group_by_prompt: bool = True,
|
|
save_as_jpg: bool = True, use_GFPGAN: bool = True, use_RealESRGAN: bool = True, loopback: bool = False,
|
|
random_seed_loopback: bool = False
|
|
):
|
|
|
|
outpath = defaults.general.outdir_img2img or defaults.general.outdir or "outputs/img2img-samples"
|
|
err = False
|
|
#loopback = False
|
|
#skip_save = False
|
|
seed = seed_to_int(seed)
|
|
|
|
batch_size = 1
|
|
|
|
#prompt_matrix = 0
|
|
#normalize_prompt_weights = 1 in toggles
|
|
#loopback = 2 in toggles
|
|
#random_seed_loopback = 3 in toggles
|
|
#skip_save = 4 not in toggles
|
|
#save_grid = 5 in toggles
|
|
#sort_samples = 6 in toggles
|
|
#write_info_files = 7 in toggles
|
|
#write_sample_info_to_log_file = 8 in toggles
|
|
#jpg_sample = 9 in toggles
|
|
#use_GFPGAN = 10 in toggles
|
|
#use_RealESRGAN = 11 in toggles
|
|
|
|
if sampler_name == 'PLMS':
|
|
sampler = PLMSSampler(st.session_state["model"])
|
|
elif sampler_name == 'DDIM':
|
|
sampler = DDIMSampler(st.session_state["model"])
|
|
elif sampler_name == 'k_dpm_2_a':
|
|
sampler = KDiffusionSampler(st.session_state["model"],'dpm_2_ancestral')
|
|
elif sampler_name == 'k_dpm_2':
|
|
sampler = KDiffusionSampler(st.session_state["model"],'dpm_2')
|
|
elif sampler_name == 'k_euler_a':
|
|
sampler = KDiffusionSampler(st.session_state["model"],'euler_ancestral')
|
|
elif sampler_name == 'k_euler':
|
|
sampler = KDiffusionSampler(st.session_state["model"],'euler')
|
|
elif sampler_name == 'k_heun':
|
|
sampler = KDiffusionSampler(st.session_state["model"],'heun')
|
|
elif sampler_name == 'k_lms':
|
|
sampler = KDiffusionSampler(st.session_state["model"],'lms')
|
|
else:
|
|
raise Exception("Unknown sampler: " + sampler_name)
|
|
|
|
init_img = init_info
|
|
init_mask = None
|
|
keep_mask = False
|
|
|
|
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
|
t_enc = int(denoising_strength * ddim_steps)
|
|
|
|
def init():
|
|
|
|
image = init_img
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = image[None].transpose(0, 3, 1, 2)
|
|
image = torch.from_numpy(image)
|
|
|
|
mask = None
|
|
if defaults.general.optimized:
|
|
modelFS.to(st.session_state["device"] )
|
|
|
|
init_image = 2. * image - 1.
|
|
init_image = init_image.to(st.session_state["device"])
|
|
init_latent = (st.session_state["model"] if not defaults.general.optimized else modelFS).get_first_stage_encoding((st.session_state["model"] if not defaults.general.optimized else modelFS).encode_first_stage(init_image)) # move to latent space
|
|
|
|
if defaults.general.optimized:
|
|
mem = torch.cuda.memory_allocated()/1e6
|
|
modelFS.to("cpu")
|
|
while(torch.cuda.memory_allocated()/1e6 >= mem):
|
|
time.sleep(1)
|
|
|
|
return init_latent, mask,
|
|
|
|
def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name):
|
|
t_enc_steps = t_enc
|
|
obliterate = False
|
|
if ddim_steps == t_enc_steps:
|
|
t_enc_steps = t_enc_steps - 1
|
|
obliterate = True
|
|
|
|
if sampler_name != 'DDIM':
|
|
x0, z_mask = init_data
|
|
|
|
sigmas = sampler.model_wrap.get_sigmas(ddim_steps)
|
|
noise = x * sigmas[ddim_steps - t_enc_steps - 1]
|
|
|
|
xi = x0 + noise
|
|
|
|
# Obliterate masked image
|
|
if z_mask is not None and obliterate:
|
|
random = torch.randn(z_mask.shape, device=xi.device)
|
|
xi = (z_mask * noise) + ((1-z_mask) * xi)
|
|
|
|
sigma_sched = sigmas[ddim_steps - t_enc_steps - 1:]
|
|
model_wrap_cfg = CFGMaskedDenoiser(sampler.model_wrap)
|
|
samples_ddim = K.sampling.__dict__[f'sample_{sampler.get_sampler_name()}'](model_wrap_cfg, xi, sigma_sched,
|
|
extra_args={'cond': conditioning, 'uncond': unconditional_conditioning,
|
|
'cond_scale': cfg_scale, 'mask': z_mask, 'x0': x0, 'xi': xi}, disable=False,
|
|
callback=generation_callback)
|
|
else:
|
|
|
|
x0, z_mask = init_data
|
|
|
|
sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=0.0, verbose=False)
|
|
z_enc = sampler.stochastic_encode(x0, torch.tensor([t_enc_steps]*batch_size).to(st.session_state["device"] ))
|
|
|
|
# Obliterate masked image
|
|
if z_mask is not None and obliterate:
|
|
random = torch.randn(z_mask.shape, device=z_enc.device)
|
|
z_enc = (z_mask * random) + ((1-z_mask) * z_enc)
|
|
|
|
# decode it
|
|
samples_ddim = sampler.decode(z_enc, conditioning, t_enc_steps,
|
|
unconditional_guidance_scale=cfg_scale,
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
z_mask=z_mask, x0=x0)
|
|
return samples_ddim
|
|
|
|
|
|
|
|
if loopback:
|
|
output_images, info = None, None
|
|
history = []
|
|
initial_seed = None
|
|
|
|
do_color_correction = False
|
|
try:
|
|
from skimage import exposure
|
|
do_color_correction = True
|
|
except:
|
|
print("Install scikit-image to perform color correction on loopback")
|
|
|
|
for i in range(1):
|
|
if do_color_correction and i == 0:
|
|
correction_target = cv2.cvtColor(np.asarray(init_img.copy()), cv2.COLOR_RGB2LAB)
|
|
|
|
output_images, seed, info, stats = process_images(
|
|
outpath=outpath,
|
|
func_init=init,
|
|
func_sample=sample,
|
|
prompt=prompt,
|
|
seed=seed,
|
|
sampler_name=sampler_name,
|
|
save_grid=save_grid,
|
|
batch_size=1,
|
|
n_iter=n_iter,
|
|
steps=ddim_steps,
|
|
cfg_scale=cfg_scale,
|
|
width=width,
|
|
height=height,
|
|
prompt_matrix=separate_prompts,
|
|
use_GFPGAN=use_GFPGAN,
|
|
use_RealESRGAN=use_RealESRGAN, # Forcefully disable upscaling when using loopback
|
|
realesrgan_model_name=RealESRGAN_model,
|
|
fp=fp,
|
|
normalize_prompt_weights=normalize_prompt_weights,
|
|
save_individual_images=save_individual_images,
|
|
init_img=init_img,
|
|
init_mask=init_mask,
|
|
keep_mask=keep_mask,
|
|
mask_blur_strength=mask_blur_strength,
|
|
denoising_strength=denoising_strength,
|
|
resize_mode=resize_mode,
|
|
uses_loopback=loopback,
|
|
uses_random_seed_loopback=random_seed_loopback,
|
|
sort_samples=group_by_prompt,
|
|
write_info_files=write_info_files,
|
|
jpg_sample=save_as_jpg
|
|
)
|
|
|
|
if initial_seed is None:
|
|
initial_seed = seed
|
|
|
|
init_img = output_images[0]
|
|
|
|
if do_color_correction and correction_target is not None:
|
|
init_img = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
|
|
cv2.cvtColor(
|
|
np.asarray(init_img),
|
|
cv2.COLOR_RGB2LAB
|
|
),
|
|
correction_target,
|
|
channel_axis=2
|
|
), cv2.COLOR_LAB2RGB).astype("uint8"))
|
|
|
|
if not random_seed_loopback:
|
|
seed = seed + 1
|
|
else:
|
|
seed = seed_to_int(None)
|
|
|
|
denoising_strength = max(denoising_strength * 0.95, 0.1)
|
|
history.append(init_img)
|
|
|
|
output_images = history
|
|
seed = initial_seed
|
|
|
|
else:
|
|
output_images, seed, info, stats = process_images(
|
|
outpath=outpath,
|
|
func_init=init,
|
|
func_sample=sample,
|
|
prompt=prompt,
|
|
seed=seed,
|
|
sampler_name=sampler_name,
|
|
save_grid=save_grid,
|
|
batch_size=batch_size,
|
|
n_iter=n_iter,
|
|
steps=ddim_steps,
|
|
cfg_scale=cfg_scale,
|
|
width=width,
|
|
height=height,
|
|
prompt_matrix=separate_prompts,
|
|
use_GFPGAN=use_GFPGAN,
|
|
use_RealESRGAN=use_RealESRGAN,
|
|
realesrgan_model_name=RealESRGAN_model,
|
|
fp=fp,
|
|
normalize_prompt_weights=normalize_prompt_weights,
|
|
save_individual_images=save_individual_images,
|
|
init_img=init_img,
|
|
init_mask=init_mask,
|
|
keep_mask=keep_mask,
|
|
mask_blur_strength=2,
|
|
denoising_strength=denoising_strength,
|
|
resize_mode=resize_mode,
|
|
uses_loopback=loopback,
|
|
sort_samples=group_by_prompt,
|
|
write_info_files=write_info_files,
|
|
jpg_sample=save_as_jpg
|
|
)
|
|
|
|
del sampler
|
|
|
|
return output_images, seed, info, stats
|
|
|
|
@retry((RuntimeError, KeyError) , tries=3)
|
|
def txt2img(prompt: str, ddim_steps: int, sampler_name: str, realesrgan_model_name: str,
|
|
n_iter: int, batch_size: int, cfg_scale: float, seed: Union[int, str, None],
|
|
height: int, width: int, separate_prompts:bool = False, normalize_prompt_weights:bool = True,
|
|
save_individual_images: bool = True, save_grid: bool = True, group_by_prompt: bool = True,
|
|
save_as_jpg: bool = True, use_GFPGAN: bool = True, use_RealESRGAN: bool = True,
|
|
RealESRGAN_model: str = "RealESRGAN_x4plus_anime_6B", fp = None, variant_amount: float = None,
|
|
variant_seed: int = None, ddim_eta:float = 0.0, write_info_files:bool = True):
|
|
|
|
outpath = defaults.general.outdir_txt2img or defaults.general.outdir or "outputs/txt2img-samples"
|
|
|
|
err = False
|
|
seed = seed_to_int(seed)
|
|
|
|
#prompt_matrix = 0 in toggles
|
|
#normalize_prompt_weights = 1 in toggles
|
|
#skip_save = 2 not in toggles
|
|
#save_grid = 3 not in toggles
|
|
#sort_samples = 4 in toggles
|
|
#write_info_files = 5 in toggles
|
|
#jpg_sample = 6 in toggles
|
|
#use_GFPGAN = 7 in toggles
|
|
#use_RealESRGAN = 8 in toggles
|
|
|
|
if sampler_name == 'PLMS':
|
|
sampler = PLMSSampler(st.session_state["model"])
|
|
elif sampler_name == 'DDIM':
|
|
sampler = DDIMSampler(st.session_state["model"])
|
|
elif sampler_name == 'k_dpm_2_a':
|
|
sampler = KDiffusionSampler(st.session_state["model"],'dpm_2_ancestral')
|
|
elif sampler_name == 'k_dpm_2':
|
|
sampler = KDiffusionSampler(st.session_state["model"],'dpm_2')
|
|
elif sampler_name == 'k_euler_a':
|
|
sampler = KDiffusionSampler(st.session_state["model"],'euler_ancestral')
|
|
elif sampler_name == 'k_euler':
|
|
sampler = KDiffusionSampler(st.session_state["model"],'euler')
|
|
elif sampler_name == 'k_heun':
|
|
sampler = KDiffusionSampler(st.session_state["model"],'heun')
|
|
elif sampler_name == 'k_lms':
|
|
sampler = KDiffusionSampler(st.session_state["model"],'lms')
|
|
else:
|
|
raise Exception("Unknown sampler: " + sampler_name)
|
|
|
|
def init():
|
|
pass
|
|
|
|
def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name):
|
|
samples_ddim, _ = sampler.sample(S=ddim_steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=cfg_scale,
|
|
unconditional_conditioning=unconditional_conditioning, eta=ddim_eta, x_T=x, img_callback=generation_callback,
|
|
log_every_t=int(defaults.general.update_preview_frequency))
|
|
|
|
return samples_ddim
|
|
|
|
#try:
|
|
output_images, seed, info, stats = process_images(
|
|
outpath=outpath,
|
|
func_init=init,
|
|
func_sample=sample,
|
|
prompt=prompt,
|
|
seed=seed,
|
|
sampler_name=sampler_name,
|
|
save_grid=save_grid,
|
|
batch_size=batch_size,
|
|
n_iter=n_iter,
|
|
steps=ddim_steps,
|
|
cfg_scale=cfg_scale,
|
|
width=width,
|
|
height=height,
|
|
prompt_matrix=separate_prompts,
|
|
use_GFPGAN=use_GFPGAN,
|
|
use_RealESRGAN=use_RealESRGAN,
|
|
realesrgan_model_name=realesrgan_model_name,
|
|
fp=fp,
|
|
ddim_eta=ddim_eta,
|
|
normalize_prompt_weights=normalize_prompt_weights,
|
|
save_individual_images=save_individual_images,
|
|
sort_samples=group_by_prompt,
|
|
write_info_files=write_info_files,
|
|
jpg_sample=save_as_jpg,
|
|
variant_amount=variant_amount,
|
|
variant_seed=variant_seed,
|
|
)
|
|
|
|
del sampler
|
|
|
|
return output_images, seed, info, stats
|
|
|
|
#except RuntimeError as e:
|
|
#err = e
|
|
#err_msg = f'CRASHED:<br><textarea rows="5" style="color:white;background: black;width: -webkit-fill-available;font-family: monospace;font-size: small;font-weight: bold;">{str(e)}</textarea><br><br>Please wait while the program restarts.'
|
|
#stats = err_msg
|
|
#return [], seed, 'err', stats
|
|
|
|
|
|
#
|
|
def txt2vid(
|
|
# --------------------------------------
|
|
# args you probably want to change
|
|
prompt:str = "blueberry spaghetti", # prompt to dream about
|
|
gpu:int = defaults.general.gpu, # id of the gpu to run on
|
|
#name:str = 'test', # name of this project, for the output directory
|
|
#rootdir:str = defaults.general.outdir,
|
|
num_steps:int = 200, # number of steps between each pair of sampled points
|
|
max_frames:int = 10000, # number of frames to write and then exit the script
|
|
num_inference_steps:int = 50, # more (e.g. 100, 200 etc) can create slightly better images
|
|
guidance_scale:float = 5.0, # can depend on the prompt. usually somewhere between 3-10 is good
|
|
seed = None,
|
|
# --------------------------------------
|
|
# args you probably don't want to change
|
|
quality:int = 100, # for jpeg compression of the output images
|
|
eta:float = 0.0,
|
|
width:int = 256,
|
|
height:int = 256,
|
|
weights_path = "CompVis/stable-diffusion-v1-4",
|
|
# --------------------------------------
|
|
sampler_name=defaults.txt2vid.default_sampler
|
|
):
|
|
"""prompt:str = "blueberry spaghetti", # prompt to dream about. \n
|
|
gpu:int = defaults.general.gpu, # id of the gpu to run on. \n
|
|
num_steps:int = 200, # number of steps between each pair of sampled points \n
|
|
max_frames:int = 10000, # number of frames to write and then exit the script \n
|
|
num_inference_steps:int = 50, # more (e.g. 100, 200 etc) can create slightly better images \n
|
|
guidance_scale:float = 5.0, # can depend on the prompt. usually somewhere between 3-10 is good \n
|
|
seed:int = None, # seed to use for generation, if left empty or its Nonea random one will be generated \n
|
|
|
|
quality:int = 100, # for jpeg compression of the output images \n
|
|
eta:float = 0.0, \n
|
|
width:int = 256, \n
|
|
height:int = 256, \n
|
|
weights_path = "CompVis/stable-diffusion-v1-4", \n
|
|
"""
|
|
|
|
if not seed or seed == '':
|
|
seed = random.randint(1, sys.maxsize)
|
|
else:
|
|
seed = seed_to_int(seed)
|
|
|
|
assert torch.cuda.is_available()
|
|
assert height % 8 == 0 and width % 8 == 0
|
|
torch.manual_seed(seed)
|
|
torch_device = f"cuda:{gpu}"
|
|
|
|
# init the output dir
|
|
sanitized_prompt = slugify(prompt)
|
|
|
|
full_path = os.path.join(os.getcwd(), defaults.general.outdir, "txt2vid-samples", "samples", sanitized_prompt)
|
|
|
|
if len(full_path) > 220:
|
|
sanitized_prompt = sanitized_prompt[:220-len(full_path)]
|
|
full_path = os.path.join(os.getcwd(), defaults.general.outdir, "txt2vid-samples", "samples", sanitized_prompt)
|
|
|
|
os.makedirs(full_path, exist_ok=True)
|
|
|
|
# init all of the models and move them to a given GPU
|
|
lms = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
|
|
|
|
try:
|
|
if not st.session_state["pipe"]:
|
|
st.session_state["pipe"] = StableDiffusionPipeline.from_pretrained(
|
|
weights_path,
|
|
use_local_file=True,
|
|
scheduler=lms,
|
|
use_auth_token=True,
|
|
torch_dtype=torch.float16,
|
|
revision="fp16"
|
|
)
|
|
|
|
st.session_state["pipe"].unet.to(torch_device)
|
|
st.session_state["pipe"].vae.to(torch_device)
|
|
st.session_state["pipe"].text_encoder.to(torch_device)
|
|
print("Tx2Vid Model Loaded")
|
|
else:
|
|
print("Tx2Vid Model already Loaded")
|
|
except:
|
|
st.session_state["pipe"] = StableDiffusionPipeline.from_pretrained(
|
|
weights_path,
|
|
use_local_file=True,
|
|
scheduler=lms,
|
|
use_auth_token=True,
|
|
torch_dtype=torch.float16,
|
|
revision="fp16"
|
|
)
|
|
|
|
st.session_state["pipe"].unet.to(torch_device)
|
|
st.session_state["pipe"].vae.to(torch_device)
|
|
st.session_state["pipe"].text_encoder.to(torch_device)
|
|
print("Tx2Vid Model Loaded")
|
|
|
|
# get the conditional text embeddings based on the prompt
|
|
text_input = st.session_state["pipe"].tokenizer(prompt, padding="max_length", max_length=st.session_state["pipe"].tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
|
cond_embeddings = st.session_state["pipe"].text_encoder(text_input.input_ids.to(torch_device))[0] # shape [1, 77, 768]
|
|
|
|
# sample a source
|
|
init1 = torch.randn((1, st.session_state["pipe"].unet.in_channels, height // 8, width // 8), device=torch_device)
|
|
|
|
# iterate the loop
|
|
frames = []
|
|
frame_index = 0
|
|
|
|
try:
|
|
while frame_index < max_frames:
|
|
st.session_state["current_frame"] = frame_index
|
|
|
|
# sample the destination
|
|
init2 = torch.randn((1, st.session_state["pipe"].unet.in_channels, height // 8, width // 8), device=torch_device)
|
|
|
|
for i, t in enumerate(np.linspace(0, 1, num_steps)):
|
|
init = slerp(gpu, float(t), init1, init2)
|
|
|
|
#print("dreaming... ", frame_index)
|
|
with autocast("cuda"):
|
|
image = diffuse(st.session_state["pipe"], cond_embeddings, init, num_inference_steps, guidance_scale, eta)
|
|
|
|
im = Image.fromarray(image)
|
|
outpath = os.path.join(full_path, 'frame%06d.png' % frame_index)
|
|
im.save(outpath, quality=quality)
|
|
|
|
# send the image to the UI to update it
|
|
#st.session_state["preview_image"].image(im)
|
|
|
|
#append the frames to the frames list so we can use them later.
|
|
frames.append(np.asarray(im))
|
|
|
|
#increase frame_index counter.
|
|
frame_index += 1
|
|
st.session_state["current_frame"] = frame_index
|
|
|
|
init1 = init2
|
|
|
|
except StopException:
|
|
pass
|
|
|
|
# write video to memory
|
|
#output = io.BytesIO()
|
|
#writer = imageio.get_writer(output, im, plugin="pillow", extension=".png", fps=30)
|
|
#for frame in frames:
|
|
# writer.append_data(frame)
|
|
#writer.close()
|
|
|
|
|
|
# functions to load css locally OR remotely starts here. Options exist for future flexibility. Called as st.markdown with unsafe_allow_html as css injection
|
|
# TODO, maybe look into async loading the file especially for remote fetching
|
|
def local_css(file_name):
|
|
with open(file_name) as f:
|
|
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
|
|
|
|
def remote_css(url):
|
|
st.markdown(f'<link href="{url}" rel="stylesheet">', unsafe_allow_html=True)
|
|
|
|
def load_css(isLocal, nameOrURL):
|
|
if(isLocal):
|
|
local_css(nameOrURL)
|
|
else:
|
|
remote_css(nameOrURL)
|
|
|
|
|
|
# main functions to define streamlit layout here
|
|
def layout():
|
|
|
|
st.set_page_config(page_title="Stable Diffusion Playground", layout="wide", initial_sidebar_state="collapsed")
|
|
|
|
with st.empty():
|
|
# load css as an external file, function has an option to local or remote url. Potential use when running from cloud infra that might not have access to local path.
|
|
load_css(True, 'frontend/css/streamlit.main.css')
|
|
|
|
# check if the models exist on their respective folders
|
|
if os.path.exists(os.path.join(defaults.general.GFPGAN_dir, "experiments", "pretrained_models", "GFPGANv1.3.pth")):
|
|
GFPGAN_available = True
|
|
else:
|
|
GFPGAN_available = False
|
|
|
|
if os.path.exists(os.path.join(defaults.general.RealESRGAN_dir, "experiments","pretrained_models", f"{defaults.general.RealESRGAN_model}.pth")):
|
|
RealESRGAN_available = True
|
|
else:
|
|
RealESRGAN_available = False
|
|
|
|
# Allow for custom models to be used instead of the default one,
|
|
# an example would be Waifu-Diffusion or any other fine tune of stable diffusion
|
|
custom_models:sorted = []
|
|
for root, dirs, files in os.walk(os.path.join("models", "custom")):
|
|
for file in files:
|
|
if os.path.splitext(file)[1] == '.ckpt':
|
|
fullpath = os.path.join(root, file)
|
|
#print(fullpath)
|
|
custom_models.append(os.path.splitext(file)[0])
|
|
#print (os.path.splitext(file)[0])
|
|
|
|
if len(custom_models) > 0:
|
|
CustomModel_available = True
|
|
custom_models.append("Stable Diffusion v1.4")
|
|
else:
|
|
CustomModel_available = False
|
|
|
|
with st.sidebar:
|
|
# we should use an expander and group things together when more options are added so the sidebar is not too messy.
|
|
#with st.expander("Global Settings:"):
|
|
st.write("Global Settings:")
|
|
defaults.general.update_preview = st.checkbox("Update Image Preview", value=defaults.general.update_preview,
|
|
help="If enabled the image preview will be updated during the generation instead of at the end. You can use the Update Preview \
|
|
Frequency option bellow to customize how frequent it's updated. By default this is enabled and the frequency is set to 1 step.")
|
|
st.session_state.update_preview_frequency = st.text_input("Update Image Preview Frequency", value=defaults.general.update_preview_frequency,
|
|
help="Frequency in steps at which the the preview image is updated. By default the frequency is set to 1 step.")
|
|
|
|
|
|
|
|
txt2img_tab, img2img_tab, txt2vid_tab, postprocessing_tab = st.tabs(["Text-to-Image Unified", "Image-to-Image Unified", "Text-to-Video","Post-Processing"])
|
|
|
|
with txt2img_tab:
|
|
with st.form("txt2img-inputs"):
|
|
st.session_state["generation_mode"] = "txt2img"
|
|
|
|
input_col1, generate_col1 = st.columns([10,1])
|
|
|
|
with input_col1:
|
|
#prompt = st.text_area("Input Text","")
|
|
prompt = st.text_input("Input Text","", placeholder="A corgi wearing a top hat as an oil painting.")
|
|
|
|
# Every form must have a submit button, the extra blank spaces is a temp way to align it with the input field. Needs to be done in CSS or some other way.
|
|
generate_col1.write("")
|
|
generate_col1.write("")
|
|
generate_button = generate_col1.form_submit_button("Generate")
|
|
|
|
# creating the page layout using columns
|
|
col1, col2, col3 = st.columns([1,2,1], gap="large")
|
|
|
|
with col1:
|
|
width = st.slider("Width:", min_value=64, max_value=1024, value=defaults.txt2img.width, step=64)
|
|
height = st.slider("Height:", min_value=64, max_value=1024, value=defaults.txt2img.height, step=64)
|
|
cfg_scale = st.slider("CFG (Classifier Free Guidance Scale):", min_value=1.0, max_value=30.0, value=defaults.txt2img.cfg_scale, step=0.5, help="How strongly the image should follow the prompt.")
|
|
seed = st.text_input("Seed:", value=defaults.txt2img.seed, help=" The seed to use, if left blank a random seed will be generated.")
|
|
batch_count = st.slider("Batch count.", min_value=1, max_value=100, value=defaults.txt2img.batch_count, step=1, help="How many iterations or batches of images to generate in total.")
|
|
#batch_size = st.slider("Batch size", min_value=1, max_value=250, value=defaults.txt2img.batch_size, step=1,
|
|
#help="How many images are at once in a batch.\
|
|
#It increases the VRAM usage a lot but if you have enough VRAM it can reduce the time it takes to finish generation as more images are generated at once.\
|
|
#Default: 1")
|
|
|
|
with col2:
|
|
preview_tab, gallery_tab = st.tabs(["Preview", "Gallery"])
|
|
|
|
with preview_tab:
|
|
#st.write("Image")
|
|
#Image for testing
|
|
#image = Image.open(requests.get("https://icon-library.com/images/image-placeholder-icon/image-placeholder-icon-13.jpg", stream=True).raw).convert('RGB')
|
|
#new_image = image.resize((175, 240))
|
|
#preview_image = st.image(image)
|
|
|
|
# create an empty container for the image, progress bar, etc so we can update it later and use session_state to hold them globally.
|
|
st.session_state["preview_image"] = st.empty()
|
|
st.session_state["preview_video"] = st.empty()
|
|
|
|
st.session_state["loading"] = st.empty()
|
|
|
|
st.session_state["progress_bar_text"] = st.empty()
|
|
st.session_state["progress_bar"] = st.empty()
|
|
|
|
message = st.empty()
|
|
|
|
with gallery_tab:
|
|
st.write('Here should be the image gallery, if I could make a grid in streamlit.')
|
|
|
|
with col3:
|
|
# If we have custom models available on the "models/custom"
|
|
#folder then we show a menu to select which model we want to use, otherwise we use the main model for SD
|
|
if CustomModel_available:
|
|
custom_model = st.selectbox("Custom Model:", custom_models,
|
|
index=custom_models.index(defaults.general.default_model),
|
|
help="Select the model you want to use. This option is only available if you have custom models \
|
|
on your 'models/custom' folder. The model name that will be shown here is the same as the name\
|
|
the file for the model has on said folder, it is recommended to give the .ckpt file a name that \
|
|
will make it easier for you to distinguish it from other models. Default: Stable Diffusion v1.4")
|
|
else:
|
|
custom_model = "Stable Diffusion v1.4"
|
|
|
|
st.session_state.sampling_steps = st.slider("Sampling Steps", value=defaults.txt2img.sampling_steps, min_value=1, max_value=250)
|
|
|
|
sampler_name_list = ["k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "k_heun", "PLMS", "DDIM"]
|
|
sampler_name = st.selectbox("Sampling method", sampler_name_list,
|
|
index=sampler_name_list.index(defaults.txt2img.default_sampler), help="Sampling method to use. Default: k_euler")
|
|
|
|
|
|
|
|
#basic_tab, advanced_tab = st.tabs(["Basic", "Advanced"])
|
|
|
|
#with basic_tab:
|
|
#summit_on_enter = st.radio("Submit on enter?", ("Yes", "No"), horizontal=True,
|
|
#help="Press the Enter key to summit, when 'No' is selected you can use the Enter key to write multiple lines.")
|
|
|
|
with st.expander("Advanced"):
|
|
separate_prompts = st.checkbox("Create Prompt Matrix.", value=False, help="Separate multiple prompts using the `|` character, and get all combinations of them.")
|
|
normalize_prompt_weights = st.checkbox("Normalize Prompt Weights.", value=defaults.txt2img.normalize_prompt_weights, help="Ensure the sum of all weights add up to 1.0")
|
|
save_individual_images = st.checkbox("Save individual images.", value=defaults.txt2img.save_individual_images, help="Save each image generated before any filter or enhancement is applied.")
|
|
save_grid = st.checkbox("Save grid",value=defaults.txt2img.save_grid, help="Save a grid with all the images generated into a single image.")
|
|
group_by_prompt = st.checkbox("Group results by prompt", value=defaults.txt2img.group_by_prompt,
|
|
help="Saves all the images with the same prompt into the same folder. When using a prompt matrix each prompt combination will have its own folder.")
|
|
write_info_files = st.checkbox("Write Info file", value=defaults.txt2img.write_info_files, help="Save a file next to the image with informartion about the generation.")
|
|
save_as_jpg = st.checkbox("Save samples as jpg", value=defaults.txt2img.save_as_jpg, help="Saves the images as jpg instead of png.")
|
|
|
|
if GFPGAN_available:
|
|
use_GFPGAN = st.checkbox("Use GFPGAN", value=defaults.txt2img.use_GFPGAN, help="Uses the GFPGAN model to improve faces after the generation. This greatly improve the quality and consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.")
|
|
else:
|
|
use_GFPGAN = False
|
|
|
|
if RealESRGAN_available:
|
|
use_RealESRGAN = st.checkbox("Use RealESRGAN", value=defaults.txt2img.use_RealESRGAN, help="Uses the RealESRGAN model to upscale the images after the generation. This greatly improve the quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.")
|
|
RealESRGAN_model = st.selectbox("RealESRGAN model", ["RealESRGAN_x4plus", "RealESRGAN_x4plus_anime_6B"], index=0)
|
|
else:
|
|
use_RealESRGAN = False
|
|
RealESRGAN_model = "RealESRGAN_x4plus"
|
|
|
|
variant_amount = st.slider("Variant Amount:", value=defaults.txt2img.variant_amount, min_value=0.0, max_value=1.0, step=0.01)
|
|
variant_seed = st.text_input("Variant Seed:", value=defaults.txt2img.seed, help="The seed to use when generating a variant, if left blank a random seed will be generated.")
|
|
|
|
|
|
if generate_button:
|
|
#print("Loading models")
|
|
# load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry.
|
|
load_models(False, use_GFPGAN, use_RealESRGAN, RealESRGAN_model, CustomModel_available, custom_model)
|
|
|
|
try:
|
|
output_images, seed, info, stats = txt2img(prompt, st.session_state.sampling_steps, sampler_name, RealESRGAN_model, batch_count, 1,
|
|
cfg_scale, seed, height, width, separate_prompts, normalize_prompt_weights, save_individual_images,
|
|
save_grid, group_by_prompt, save_as_jpg, use_GFPGAN, use_RealESRGAN, RealESRGAN_model, fp=defaults.general.fp,
|
|
variant_amount=variant_amount, variant_seed=variant_seed, write_info_files=write_info_files)
|
|
|
|
message.success('Render Complete: ' + info + '; Stats: ' + stats, icon="✅")
|
|
|
|
except KeyError:
|
|
output_images, seed, info, stats = txt2img(prompt, st.session_state.sampling_steps, sampler_name, RealESRGAN_model, batch_count, 1,
|
|
cfg_scale, seed, height, width, separate_prompts, normalize_prompt_weights, save_individual_images,
|
|
save_grid, group_by_prompt, save_as_jpg, use_GFPGAN, use_RealESRGAN, RealESRGAN_model, fp=defaults.general.fp,
|
|
variant_amount=variant_amount, variant_seed=variant_seed, write_info_files=write_info_files)
|
|
|
|
message.success('Render Complete: ' + info + '; Stats: ' + stats, icon="✅")
|
|
|
|
except (StopException):
|
|
print(f"Received Streamlit StopException")
|
|
|
|
# this will render all the images at the end of the generation but its better if its moved to a second tab inside col2 and shown as a gallery.
|
|
# use the current col2 first tab to show the preview_img and update it as its generated.
|
|
#preview_image.image(output_images)
|
|
|
|
with img2img_tab:
|
|
with st.form("img2img-inputs"):
|
|
st.session_state["generation_mode"] = "img2img"
|
|
|
|
img2img_input_col, img2img_generate_col = st.columns([10,1])
|
|
with img2img_input_col:
|
|
#prompt = st.text_area("Input Text","")
|
|
prompt = st.text_input("Input Text","", placeholder="A corgi wearing a top hat as an oil painting.")
|
|
|
|
# Every form must have a submit button, the extra blank spaces is a temp way to align it with the input field. Needs to be done in CSS or some other way.
|
|
img2img_generate_col.write("")
|
|
img2img_generate_col.write("")
|
|
generate_button = img2img_generate_col.form_submit_button("Generate")
|
|
|
|
|
|
# creating the page layout using columns
|
|
col1_img2img_layout, col2_img2img_layout, col3_img2img_layout = st.columns([1,2,2], gap="small")
|
|
|
|
with col1_img2img_layout:
|
|
# If we have custom models available on the "models/custom"
|
|
#folder then we show a menu to select which model we want to use, otherwise we use the main model for SD
|
|
if CustomModel_available:
|
|
custom_model = st.selectbox("Custom Model:", custom_models,
|
|
index=custom_models.index(defaults.general.default_model),
|
|
help="Select the model you want to use. This option is only available if you have custom models \
|
|
on your 'models/custom' folder. The model name that will be shown here is the same as the name\
|
|
the file for the model has on said folder, it is recommended to give the .ckpt file a name that \
|
|
will make it easier for you to distinguish it from other models. Default: Stable Diffusion v1.4")
|
|
else:
|
|
custom_model = "Stable Diffusion v1.4"
|
|
|
|
st.session_state["sampling_steps"] = st.slider("Sampling Steps", value=defaults.img2img.sampling_steps, min_value=1, max_value=250)
|
|
st.session_state["sampler_name"] = st.selectbox("Sampling method", ["k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "k_heun", "PLMS", "DDIM"],
|
|
index=0, help="Sampling method to use. Default: k_lms")
|
|
|
|
uploaded_images = st.file_uploader("Upload Image", accept_multiple_files=False, type=["png", "jpg", "jpeg"],
|
|
help="Upload an image which will be used for the image to image generation."
|
|
)
|
|
|
|
width = st.slider("Width:", min_value=64, max_value=1024, value=defaults.img2img.width, step=64)
|
|
height = st.slider("Height:", min_value=64, max_value=1024, value=defaults.img2img.height, step=64)
|
|
seed = st.text_input("Seed:", value=defaults.img2img.seed, help=" The seed to use, if left blank a random seed will be generated.")
|
|
batch_count = st.slider("Batch count.", min_value=1, max_value=100, value=defaults.img2img.batch_count, step=1, help="How many iterations or batches of images to generate in total.")
|
|
|
|
#
|
|
with st.expander("Advanced"):
|
|
separate_prompts = st.checkbox("Create Prompt Matrix.", value=defaults.img2img.separate_prompts, help="Separate multiple prompts using the `|` character, and get all combinations of them.")
|
|
normalize_prompt_weights = st.checkbox("Normalize Prompt Weights.", value=defaults.img2img.normalize_prompt_weights, help="Ensure the sum of all weights add up to 1.0")
|
|
loopback = st.checkbox("Loopback.", value=defaults.img2img.loopback, help="Use images from previous batch when creating next batch.")
|
|
random_seed_loopback = st.checkbox("Random loopback seed.", value=defaults.img2img.random_seed_loopback, help="Random loopback seed")
|
|
save_individual_images = st.checkbox("Save individual images.", value=defaults.img2img.save_individual_images, help="Save each image generated before any filter or enhancement is applied.")
|
|
save_grid = st.checkbox("Save grid",value=defaults.img2img.save_grid, help="Save a grid with all the images generated into a single image.")
|
|
group_by_prompt = st.checkbox("Group results by prompt", value=defaults.img2img.group_by_prompt,
|
|
help="Saves all the images with the same prompt into the same folder. When using a prompt matrix each prompt combination will have its own folder.")
|
|
write_info_files = st.checkbox("Write Info file", value=defaults.img2img.write_info_files, help="Save a file next to the image with informartion about the generation.")
|
|
save_as_jpg = st.checkbox("Save samples as jpg", value=defaults.img2img.save_as_jpg, help="Saves the images as jpg instead of png.")
|
|
|
|
if GFPGAN_available:
|
|
use_GFPGAN = st.checkbox("Use GFPGAN", value=defaults.img2img.use_GFPGAN, help="Uses the GFPGAN model to improve faces after the generation.\
|
|
This greatly improve the quality and consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.")
|
|
else:
|
|
use_GFPGAN = False
|
|
|
|
if RealESRGAN_available:
|
|
use_RealESRGAN = st.checkbox("Use RealESRGAN", value=defaults.img2img.use_RealESRGAN, help="Uses the RealESRGAN model to upscale the images after the generation.\
|
|
This greatly improve the quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.")
|
|
RealESRGAN_model = st.selectbox("RealESRGAN model", ["RealESRGAN_x4plus", "RealESRGAN_x4plus_anime_6B"], index=0)
|
|
else:
|
|
use_RealESRGAN = False
|
|
RealESRGAN_model = "RealESRGAN_x4plus"
|
|
|
|
variant_amount = st.slider("Variant Amount:", value=defaults.img2img.variant_amount, min_value=0.0, max_value=1.0, step=0.01)
|
|
variant_seed = st.text_input("Variant Seed:", value=defaults.img2img.variant_seed, help="The seed to use when generating a variant, if left blank a random seed will be generated.")
|
|
cfg_scale = st.slider("CFG (Classifier Free Guidance Scale):", min_value=1.0, max_value=30.0, value=defaults.img2img.cfg_scale, step=0.5, help="How strongly the image should follow the prompt.")
|
|
batch_size = st.slider("Batch size", min_value=1, max_value=100, value=defaults.img2img.batch_size, step=1,
|
|
help="How many images are at once in a batch.\
|
|
It increases the VRAM usage a lot but if you have enough VRAM it can reduce the time it takes to finish generation as more images are generated at once.\
|
|
Default: 1")
|
|
|
|
st.session_state["denoising_strength"] = st.slider("Denoising Strength:", value=defaults.img2img.denoising_strength, min_value=0.01, max_value=1.0, step=0.01)
|
|
|
|
|
|
with col2_img2img_layout:
|
|
editor_tab = st.tabs(["Editor"])
|
|
|
|
editor_image = st.empty()
|
|
st.session_state["editor_image"] = editor_image
|
|
|
|
if uploaded_images:
|
|
image = Image.open(uploaded_images).convert('RGB')
|
|
#img_array = np.array(image) # if you want to pass it to OpenCV
|
|
new_img = image.resize((width, height))
|
|
st.image(new_img)
|
|
|
|
|
|
with col3_img2img_layout:
|
|
result_tab = st.tabs(["Result"])
|
|
|
|
# create an empty container for the image, progress bar, etc so we can update it later and use session_state to hold them globally.
|
|
preview_image = st.empty()
|
|
st.session_state["preview_image"] = preview_image
|
|
|
|
#st.session_state["loading"] = st.empty()
|
|
|
|
st.session_state["progress_bar_text"] = st.empty()
|
|
st.session_state["progress_bar"] = st.empty()
|
|
|
|
|
|
message = st.empty()
|
|
|
|
#if uploaded_images:
|
|
#image = Image.open(uploaded_images).convert('RGB')
|
|
##img_array = np.array(image) # if you want to pass it to OpenCV
|
|
#new_img = image.resize((width, height))
|
|
#st.image(new_img, use_column_width=True)
|
|
|
|
|
|
if generate_button:
|
|
#print("Loading models")
|
|
# load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry.
|
|
load_models(False, use_GFPGAN, use_RealESRGAN, RealESRGAN_model, CustomModel_available, custom_model)
|
|
if uploaded_images:
|
|
image = Image.open(uploaded_images).convert('RGB')
|
|
new_img = image.resize((width, height))
|
|
#img_array = np.array(image) # if you want to pass it to OpenCV
|
|
|
|
try:
|
|
output_images, seed, info, stats = img2img(prompt=prompt, init_info=new_img, ddim_steps=st.session_state["sampling_steps"],
|
|
sampler_name=st.session_state["sampler_name"], n_iter=batch_count,
|
|
cfg_scale=cfg_scale, denoising_strength=st.session_state["denoising_strength"], variant_seed=variant_seed,
|
|
seed=seed, width=width, height=height, fp=defaults.general.fp, variant_amount=variant_amount,
|
|
ddim_eta=0.0, write_info_files=write_info_files, RealESRGAN_model=RealESRGAN_model,
|
|
separate_prompts=separate_prompts, normalize_prompt_weights=normalize_prompt_weights,
|
|
save_individual_images=save_individual_images, save_grid=save_grid,
|
|
group_by_prompt=group_by_prompt, save_as_jpg=save_as_jpg, use_GFPGAN=use_GFPGAN,
|
|
use_RealESRGAN=use_RealESRGAN if not loopback else False, loopback=loopback
|
|
)
|
|
|
|
#show a message when the generation is complete.
|
|
message.success('Render Complete: ' + info + '; Stats: ' + stats, icon="✅")
|
|
|
|
except (StopException, KeyError):
|
|
print(f"Received Streamlit StopException")
|
|
|
|
# this will render all the images at the end of the generation but its better if its moved to a second tab inside col2 and shown as a gallery.
|
|
# use the current col2 first tab to show the preview_img and update it as its generated.
|
|
#preview_image.image(output_images, width=750)
|
|
|
|
with txt2vid_tab:
|
|
with st.form("txt2vid-inputs"):
|
|
st.session_state["generation_mode"] = "txt2vid"
|
|
|
|
input_col1, generate_col1 = st.columns([10,1])
|
|
with input_col1:
|
|
#prompt = st.text_area("Input Text","")
|
|
prompt = st.text_input("Input Text","", placeholder="A corgi wearing a top hat as an oil painting.")
|
|
|
|
# Every form must have a submit button, the extra blank spaces is a temp way to align it with the input field. Needs to be done in CSS or some other way.
|
|
generate_col1.write("")
|
|
generate_col1.write("")
|
|
generate_button = generate_col1.form_submit_button("Generate")
|
|
|
|
# creating the page layout using columns
|
|
col1, col2, col3 = st.columns([1,2,1], gap="large")
|
|
|
|
with col1:
|
|
width = st.slider("Width:", min_value=64, max_value=1024, value=defaults.txt2vid.width, step=64)
|
|
height = st.slider("Height:", min_value=64, max_value=1024, value=defaults.txt2vid.height, step=64)
|
|
cfg_scale = st.slider("CFG (Classifier Free Guidance Scale):", min_value=1.0, max_value=30.0, value=defaults.txt2vid.cfg_scale, step=0.5, help="How strongly the image should follow the prompt.")
|
|
seed = st.text_input("Seed:", value=defaults.txt2vid.seed, help=" The seed to use, if left blank a random seed will be generated.")
|
|
batch_count = st.slider("Batch count.", min_value=1, max_value=100, value=defaults.txt2vid.batch_count, step=1, help="How many iterations or batches of images to generate in total.")
|
|
#batch_size = st.slider("Batch size", min_value=1, max_value=250, value=defaults.txt2vid.batch_size, step=1,
|
|
#help="How many images are at once in a batch.\
|
|
#It increases the VRAM usage a lot but if you have enough VRAM it can reduce the time it takes to finish generation as more images are generated at once.\
|
|
#Default: 1")
|
|
|
|
st.session_state["max_frames"] = int(st.text_input("Max Frames:", value=defaults.txt2vid.max_frames, help="Specify the max number of frames you want to generate."))
|
|
|
|
with col2:
|
|
preview_tab, gallery_tab = st.tabs(["Preview", "Gallery"])
|
|
|
|
with preview_tab:
|
|
#st.write("Image")
|
|
#Image for testing
|
|
#image = Image.open(requests.get("https://icon-library.com/images/image-placeholder-icon/image-placeholder-icon-13.jpg", stream=True).raw).convert('RGB')
|
|
#new_image = image.resize((175, 240))
|
|
#preview_image = st.image(image)
|
|
|
|
# create an empty container for the image, progress bar, etc so we can update it later and use session_state to hold them globally.
|
|
st.session_state["preview_image"] = st.empty()
|
|
|
|
st.session_state["loading"] = st.empty()
|
|
|
|
st.session_state["progress_bar_text"] = st.empty()
|
|
st.session_state["progress_bar"] = st.empty()
|
|
|
|
message = st.empty()
|
|
|
|
with gallery_tab:
|
|
st.write('Here should be the image gallery, if I could make a grid in streamlit.')
|
|
|
|
with col3:
|
|
# If we have custom models available on the "models/custom"
|
|
#folder then we show a menu to select which model we want to use, otherwise we use the main model for SD
|
|
if CustomModel_available:
|
|
custom_model = st.selectbox("Custom Model:", custom_models,
|
|
index=custom_models.index(defaults.general.default_model),
|
|
help="Select the model you want to use. This option is only available if you have custom models \
|
|
on your 'models/custom' folder. The model name that will be shown here is the same as the name\
|
|
the file for the model has on said folder, it is recommended to give the .ckpt file a name that \
|
|
will make it easier for you to distinguish it from other models. Default: Stable Diffusion v1.4")
|
|
else:
|
|
custom_model = "Stable Diffusion v1.4"
|
|
|
|
st.session_state.sampling_steps = st.slider("Sampling Steps", value=defaults.txt2vid.sampling_steps, min_value=1, max_value=250,
|
|
help="Number of steps between each pair of sampled points")
|
|
st.session_state.num_inference_steps = st.slider("Inference Steps:", value=defaults.txt2vid.num_inference_steps, min_value=1, max_value=250,
|
|
help="Higher values (e.g. 100, 200 etc) can create better images.")
|
|
|
|
sampler_name_list = ["k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "k_heun", "PLMS", "DDIM"]
|
|
sampler_name = st.selectbox("Sampling method", sampler_name_list,
|
|
index=sampler_name_list.index(defaults.txt2vid.default_sampler), help="Sampling method to use. Default: k_euler")
|
|
|
|
|
|
|
|
#basic_tab, advanced_tab = st.tabs(["Basic", "Advanced"])
|
|
|
|
#with basic_tab:
|
|
#summit_on_enter = st.radio("Submit on enter?", ("Yes", "No"), horizontal=True,
|
|
#help="Press the Enter key to summit, when 'No' is selected you can use the Enter key to write multiple lines.")
|
|
|
|
with st.expander("Advanced"):
|
|
separate_prompts = st.checkbox("Create Prompt Matrix.", value=False, help="Separate multiple prompts using the `|` character, and get all combinations of them.")
|
|
normalize_prompt_weights = st.checkbox("Normalize Prompt Weights.", value=True, help="Ensure the sum of all weights add up to 1.0")
|
|
save_individual_images = st.checkbox("Save individual images.", value=True, help="Save each image generated before any filter or enhancement is applied.")
|
|
save_grid = st.checkbox("Save grid",value=True, help="Save a grid with all the images generated into a single image.")
|
|
group_by_prompt = st.checkbox("Group results by prompt", value=True,
|
|
help="Saves all the images with the same prompt into the same folder. When using a prompt matrix each prompt combination will have its own folder.")
|
|
write_info_files = st.checkbox("Write Info file", value=True, help="Save a file next to the image with informartion about the generation.")
|
|
save_as_jpg = st.checkbox("Save samples as jpg", value=False, help="Saves the images as jpg instead of png.")
|
|
|
|
if GFPGAN_available:
|
|
use_GFPGAN = st.checkbox("Use GFPGAN", value=defaults.txt2vid.use_GFPGAN, help="Uses the GFPGAN model to improve faces after the generation. This greatly improve the quality and consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.")
|
|
else:
|
|
use_GFPGAN = False
|
|
|
|
if RealESRGAN_available:
|
|
use_RealESRGAN = st.checkbox("Use RealESRGAN", value=defaults.txt2vid.use_RealESRGAN, help="Uses the RealESRGAN model to upscale the images after the generation. This greatly improve the quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.")
|
|
RealESRGAN_model = st.selectbox("RealESRGAN model", ["RealESRGAN_x4plus", "RealESRGAN_x4plus_anime_6B"], index=0)
|
|
else:
|
|
use_RealESRGAN = False
|
|
RealESRGAN_model = "RealESRGAN_x4plus"
|
|
|
|
variant_amount = st.slider("Variant Amount:", value=defaults.txt2vid.variant_amount, min_value=0.0, max_value=1.0, step=0.01)
|
|
variant_seed = st.text_input("Variant Seed:", value=defaults.txt2vid.seed, help="The seed to use when generating a variant, if left blank a random seed will be generated.")
|
|
|
|
|
|
if generate_button:
|
|
#print("Loading models")
|
|
# load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry.
|
|
load_models(False, False, False, RealESRGAN_model, CustomModel_available=CustomModel_available, custom_model=custom_model)
|
|
|
|
try:
|
|
#output_images, seed, info, stats = txt2vid(prompt, st.session_state.sampling_steps, sampler_name, RealESRGAN_model, batch_count, 1,
|
|
#cfg_scale, seed, height, width, separate_prompts, normalize_prompt_weights, save_individual_images,
|
|
#save_grid, group_by_prompt, save_as_jpg, use_GFPGAN, use_RealESRGAN, RealESRGAN_model, fp=defaults.general.fp,
|
|
#variant_amount=variant_amount, variant_seed=variant_seed, write_info_files=write_info_files)
|
|
|
|
|
|
txt2vid(prompt=prompt, gpu=defaults.general.gpu,
|
|
num_steps=st.session_state.sampling_steps, max_frames=int(st.session_state.max_frames), num_inference_steps=st.session_state.num_inference_steps,
|
|
guidance_scale=cfg_scale,
|
|
seed=seed if seed else random.randint(1,sys.maxsize), quality=100, eta=0.0, width=width,
|
|
height=height, weights_path="CompVis/stable-diffusion-v1-4")
|
|
|
|
message.success('Done!', icon="✅")
|
|
#message.warning("The Text to Video tab hasn't been implemented yet!")
|
|
|
|
except (StopException, KeyError):
|
|
print(f"Received Streamlit StopException")
|
|
|
|
# this will render all the images at the end of the generation but its better if its moved to a second tab inside col2 and shown as a gallery.
|
|
# use the current col2 first tab to show the preview_img and update it as its generated.
|
|
#preview_image.image(output_images)
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
layout() |