mirror of
https://github.com/Sygil-Dev/sygil-webui.git
synced 2024-12-15 22:42:14 +03:00
56b91b8bdc
* Some options on the Streamlit txt2img page now follow the defaults from the relevant config files. * Fixed a copy-paste gone wrong in my previous commit. * st.session_state["defaults"] fix Co-authored-by: hlky <106811348+hlky@users.noreply.github.com>
364 lines
20 KiB
Python
364 lines
20 KiB
Python
# base webui import and utils.
|
|
from webui_streamlit import st
|
|
from sd_utils import *
|
|
|
|
# streamlit imports
|
|
from streamlit import StopException
|
|
from streamlit.runtime.in_memory_file_manager import in_memory_file_manager
|
|
from streamlit.elements import image as STImage
|
|
|
|
#other imports
|
|
import os
|
|
from typing import Union
|
|
from io import BytesIO
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
from ldm.models.diffusion.plms import PLMSSampler
|
|
|
|
# Temp imports
|
|
|
|
|
|
# end of imports
|
|
#---------------------------------------------------------------------------------------------------------------
|
|
|
|
|
|
try:
|
|
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
|
|
from transformers import logging
|
|
|
|
logging.set_verbosity_error()
|
|
except:
|
|
pass
|
|
|
|
class plugin_info():
|
|
plugname = "txt2img"
|
|
description = "Text to Image"
|
|
isTab = True
|
|
displayPriority = 1
|
|
|
|
|
|
if os.path.exists(os.path.join(st.session_state['defaults'].general.GFPGAN_dir, "experiments", "pretrained_models", "GFPGANv1.3.pth")):
|
|
GFPGAN_available = True
|
|
else:
|
|
GFPGAN_available = False
|
|
|
|
if os.path.exists(os.path.join(st.session_state['defaults'].general.RealESRGAN_dir, "experiments","pretrained_models", f"{st.session_state['defaults'].general.RealESRGAN_model}.pth")):
|
|
RealESRGAN_available = True
|
|
else:
|
|
RealESRGAN_available = False
|
|
|
|
#
|
|
def txt2img(prompt: str, ddim_steps: int, sampler_name: str, realesrgan_model_name: str,
|
|
n_iter: int, batch_size: int, cfg_scale: float, seed: Union[int, str, None],
|
|
height: int, width: int, separate_prompts:bool = False, normalize_prompt_weights:bool = True,
|
|
save_individual_images: bool = True, save_grid: bool = True, group_by_prompt: bool = True,
|
|
save_as_jpg: bool = True, use_GFPGAN: bool = True, use_RealESRGAN: bool = True,
|
|
RealESRGAN_model: str = "RealESRGAN_x4plus_anime_6B", fp = None, variant_amount: float = None,
|
|
variant_seed: int = None, ddim_eta:float = 0.0, write_info_files:bool = True):
|
|
|
|
outpath = st.session_state['defaults'].general.outdir_txt2img or st.session_state['defaults'].general.outdir or "outputs/txt2img-samples"
|
|
|
|
seed = seed_to_int(seed)
|
|
|
|
#prompt_matrix = 0 in toggles
|
|
#normalize_prompt_weights = 1 in toggles
|
|
#skip_save = 2 not in toggles
|
|
#save_grid = 3 not in toggles
|
|
#sort_samples = 4 in toggles
|
|
#write_info_files = 5 in toggles
|
|
#jpg_sample = 6 in toggles
|
|
#use_GFPGAN = 7 in toggles
|
|
#use_RealESRGAN = 8 in toggles
|
|
|
|
if sampler_name == 'PLMS':
|
|
sampler = PLMSSampler(st.session_state["model"])
|
|
elif sampler_name == 'DDIM':
|
|
sampler = DDIMSampler(st.session_state["model"])
|
|
elif sampler_name == 'k_dpm_2_a':
|
|
sampler = KDiffusionSampler(st.session_state["model"],'dpm_2_ancestral')
|
|
elif sampler_name == 'k_dpm_2':
|
|
sampler = KDiffusionSampler(st.session_state["model"],'dpm_2')
|
|
elif sampler_name == 'k_euler_a':
|
|
sampler = KDiffusionSampler(st.session_state["model"],'euler_ancestral')
|
|
elif sampler_name == 'k_euler':
|
|
sampler = KDiffusionSampler(st.session_state["model"],'euler')
|
|
elif sampler_name == 'k_heun':
|
|
sampler = KDiffusionSampler(st.session_state["model"],'heun')
|
|
elif sampler_name == 'k_lms':
|
|
sampler = KDiffusionSampler(st.session_state["model"],'lms')
|
|
else:
|
|
raise Exception("Unknown sampler: " + sampler_name)
|
|
|
|
def init():
|
|
pass
|
|
|
|
def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name):
|
|
samples_ddim, _ = sampler.sample(S=ddim_steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=cfg_scale,
|
|
unconditional_conditioning=unconditional_conditioning, eta=ddim_eta, x_T=x, img_callback=generation_callback,
|
|
log_every_t=int(st.session_state.update_preview_frequency))
|
|
|
|
return samples_ddim
|
|
|
|
#try:
|
|
output_images, seed, info, stats = process_images(
|
|
outpath=outpath,
|
|
func_init=init,
|
|
func_sample=sample,
|
|
prompt=prompt,
|
|
seed=seed,
|
|
sampler_name=sampler_name,
|
|
save_grid=save_grid,
|
|
batch_size=batch_size,
|
|
n_iter=n_iter,
|
|
steps=ddim_steps,
|
|
cfg_scale=cfg_scale,
|
|
width=width,
|
|
height=height,
|
|
prompt_matrix=separate_prompts,
|
|
use_GFPGAN=st.session_state["use_GFPGAN"],
|
|
use_RealESRGAN=st.session_state["use_RealESRGAN"],
|
|
realesrgan_model_name=realesrgan_model_name,
|
|
ddim_eta=ddim_eta,
|
|
normalize_prompt_weights=normalize_prompt_weights,
|
|
save_individual_images=save_individual_images,
|
|
sort_samples=group_by_prompt,
|
|
write_info_files=write_info_files,
|
|
jpg_sample=save_as_jpg,
|
|
variant_amount=variant_amount,
|
|
variant_seed=variant_seed,
|
|
)
|
|
|
|
del sampler
|
|
|
|
return output_images, seed, info, stats
|
|
|
|
#except RuntimeError as e:
|
|
#err = e
|
|
#err_msg = f'CRASHED:<br><textarea rows="5" style="color:white;background: black;width: -webkit-fill-available;font-family: monospace;font-size: small;font-weight: bold;">{str(e)}</textarea><br><br>Please wait while the program restarts.'
|
|
#stats = err_msg
|
|
#return [], seed, 'err', stats
|
|
|
|
def layout():
|
|
with st.form("txt2img-inputs"):
|
|
st.session_state["generation_mode"] = "txt2img"
|
|
|
|
input_col1, generate_col1 = st.columns([10,1])
|
|
|
|
with input_col1:
|
|
#prompt = st.text_area("Input Text","")
|
|
prompt = st.text_input("Input Text","", placeholder="A corgi wearing a top hat as an oil painting.")
|
|
|
|
# Every form must have a submit button, the extra blank spaces is a temp way to align it with the input field. Needs to be done in CSS or some other way.
|
|
generate_col1.write("")
|
|
generate_col1.write("")
|
|
generate_button = generate_col1.form_submit_button("Generate")
|
|
|
|
# creating the page layout using columns
|
|
col1, col2, col3 = st.columns([1,2,1], gap="large")
|
|
|
|
with col1:
|
|
width = st.slider("Width:", min_value=64, max_value=4096, value=st.session_state['defaults'].txt2img.width, step=64)
|
|
height = st.slider("Height:", min_value=64, max_value=4096, value=st.session_state['defaults'].txt2img.height, step=64)
|
|
cfg_scale = st.slider("CFG (Classifier Free Guidance Scale):", min_value=1.0, max_value=30.0, value=st.session_state['defaults'].txt2img.cfg_scale, step=0.5, help="How strongly the image should follow the prompt.")
|
|
seed = st.text_input("Seed:", value=st.session_state['defaults'].txt2img.seed, help=" The seed to use, if left blank a random seed will be generated.")
|
|
batch_count = st.slider("Batch count.", min_value=1, max_value=100, value=st.session_state['defaults'].txt2img.batch_count, step=1, help="How many iterations or batches of images to generate in total.")
|
|
|
|
bs_slider_max_value = 5
|
|
if st.session_state.defaults.general.optimized:
|
|
bs_slider_max_value = 100
|
|
|
|
batch_size = st.slider(
|
|
"Batch size",
|
|
min_value=1,
|
|
max_value=bs_slider_max_value,
|
|
value=st.session_state.defaults.txt2img.batch_size,
|
|
step=1,
|
|
help="How many images are at once in a batch.\
|
|
It increases the VRAM usage a lot but if you have enough VRAM it can reduce the time it takes to finish generation as more images are generated at once.\
|
|
Default: 1")
|
|
|
|
with st.expander("Preview Settings"):
|
|
st.session_state["update_preview"] = st.checkbox("Update Image Preview", value=st.session_state['defaults'].txt2img.update_preview,
|
|
help="If enabled the image preview will be updated during the generation instead of at the end. \
|
|
You can use the Update Preview \Frequency option bellow to customize how frequent it's updated. \
|
|
By default this is enabled and the frequency is set to 1 step.")
|
|
|
|
st.session_state["update_preview_frequency"] = st.text_input("Update Image Preview Frequency", value=st.session_state['defaults'].txt2img.update_preview_frequency,
|
|
help="Frequency in steps at which the the preview image is updated. By default the frequency \
|
|
is set to 1 step.")
|
|
|
|
with col2:
|
|
preview_tab, gallery_tab = st.tabs(["Preview", "Gallery"])
|
|
|
|
with preview_tab:
|
|
#st.write("Image")
|
|
#Image for testing
|
|
#image = Image.open(requests.get("https://icon-library.com/images/image-placeholder-icon/image-placeholder-icon-13.jpg", stream=True).raw).convert('RGB')
|
|
#new_image = image.resize((175, 240))
|
|
#preview_image = st.image(image)
|
|
|
|
# create an empty container for the image, progress bar, etc so we can update it later and use session_state to hold them globally.
|
|
st.session_state["preview_image"] = st.empty()
|
|
|
|
st.session_state["loading"] = st.empty()
|
|
|
|
st.session_state["progress_bar_text"] = st.empty()
|
|
st.session_state["progress_bar"] = st.empty()
|
|
|
|
message = st.empty()
|
|
|
|
with col3:
|
|
# If we have custom models available on the "models/custom"
|
|
#folder then we show a menu to select which model we want to use, otherwise we use the main model for SD
|
|
if st.session_state.CustomModel_available:
|
|
st.session_state.custom_model = st.selectbox("Custom Model:", st.session_state.custom_models,
|
|
index=st.session_state["custom_models"].index(st.session_state['defaults'].general.default_model),
|
|
help="Select the model you want to use. This option is only available if you have custom models \
|
|
on your 'models/custom' folder. The model name that will be shown here is the same as the name\
|
|
the file for the model has on said folder, it is recommended to give the .ckpt file a name that \
|
|
will make it easier for you to distinguish it from other models. Default: Stable Diffusion v1.4")
|
|
|
|
st.session_state.sampling_steps = st.slider("Sampling Steps", value=st.session_state['defaults'].txt2img.sampling_steps, min_value=10, max_value=500, step=10)
|
|
|
|
sampler_name_list = ["k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "k_heun", "PLMS", "DDIM"]
|
|
sampler_name = st.selectbox("Sampling method", sampler_name_list,
|
|
index=sampler_name_list.index(st.session_state['defaults'].txt2img.default_sampler), help="Sampling method to use. Default: k_euler")
|
|
|
|
|
|
|
|
#basic_tab, advanced_tab = st.tabs(["Basic", "Advanced"])
|
|
|
|
#with basic_tab:
|
|
#summit_on_enter = st.radio("Submit on enter?", ("Yes", "No"), horizontal=True,
|
|
#help="Press the Enter key to summit, when 'No' is selected you can use the Enter key to write multiple lines.")
|
|
|
|
with st.expander("Advanced"):
|
|
separate_prompts = st.checkbox("Create Prompt Matrix.", value=st.session_state['defaults'].txt2img.separate_prompts, help="Separate multiple prompts using the `|` character, and get all combinations of them.")
|
|
normalize_prompt_weights = st.checkbox("Normalize Prompt Weights.", value=st.session_state['defaults'].txt2img.normalize_prompt_weights, help="Ensure the sum of all weights add up to 1.0")
|
|
save_individual_images = st.checkbox("Save individual images.", value=st.session_state['defaults'].txt2img.save_individual_images, help="Save each image generated before any filter or enhancement is applied.")
|
|
save_grid = st.checkbox("Save grid",value=st.session_state['defaults'].txt2img.save_grid, help="Save a grid with all the images generated into a single image.")
|
|
group_by_prompt = st.checkbox("Group results by prompt", value=st.session_state['defaults'].txt2img.group_by_prompt,
|
|
help="Saves all the images with the same prompt into the same folder. When using a prompt matrix each prompt combination will have its own folder.")
|
|
write_info_files = st.checkbox("Write Info file", value=st.session_state['defaults'].txt2img.write_info_files, help="Save a file next to the image with informartion about the generation.")
|
|
save_as_jpg = st.checkbox("Save samples as jpg", value=st.session_state['defaults'].txt2img.save_as_jpg, help="Saves the images as jpg instead of png.")
|
|
|
|
if st.session_state["GFPGAN_available"]:
|
|
st.session_state["use_GFPGAN"] = st.checkbox("Use GFPGAN", value=st.session_state['defaults'].txt2img.use_GFPGAN, help="Uses the GFPGAN model to improve faces after the generation.\
|
|
This greatly improve the quality and consistency of faces but uses extra VRAM. Disable if you need the extra VRAM.")
|
|
else:
|
|
st.session_state["use_GFPGAN"] = False
|
|
|
|
if st.session_state["RealESRGAN_available"]:
|
|
st.session_state["use_RealESRGAN"] = st.checkbox("Use RealESRGAN", value=st.session_state['defaults'].txt2img.use_RealESRGAN,
|
|
help="Uses the RealESRGAN model to upscale the images after the generation.\
|
|
This greatly improve the quality and lets you have high resolution images but uses extra VRAM. Disable if you need the extra VRAM.")
|
|
st.session_state["RealESRGAN_model"] = st.selectbox("RealESRGAN model", ["RealESRGAN_x4plus", "RealESRGAN_x4plus_anime_6B"], index=0)
|
|
else:
|
|
st.session_state["use_RealESRGAN"] = False
|
|
st.session_state["RealESRGAN_model"] = "RealESRGAN_x4plus"
|
|
|
|
variant_amount = st.slider("Variant Amount:", value=st.session_state['defaults'].txt2img.variant_amount, min_value=0.0, max_value=1.0, step=0.01)
|
|
variant_seed = st.text_input("Variant Seed:", value=st.session_state['defaults'].txt2img.seed, help="The seed to use when generating a variant, if left blank a random seed will be generated.")
|
|
galleryCont = st.empty()
|
|
|
|
if generate_button:
|
|
#print("Loading models")
|
|
# load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry.
|
|
load_models(False, st.session_state["use_GFPGAN"], st.session_state["use_RealESRGAN"], st.session_state["RealESRGAN_model"], st.session_state["CustomModel_available"],
|
|
st.session_state["custom_model"])
|
|
|
|
|
|
try:
|
|
#
|
|
output_images, seeds, info, stats = txt2img(prompt, st.session_state.sampling_steps, sampler_name, st.session_state["RealESRGAN_model"], batch_count, batch_size,
|
|
cfg_scale, seed, height, width, separate_prompts, normalize_prompt_weights, save_individual_images,
|
|
save_grid, group_by_prompt, save_as_jpg, st.session_state["use_GFPGAN"], st.session_state["use_RealESRGAN"], st.session_state["RealESRGAN_model"],
|
|
variant_amount=variant_amount, variant_seed=variant_seed, write_info_files=write_info_files)
|
|
|
|
message.success('Render Complete: ' + info + '; Stats: ' + stats, icon="✅")
|
|
|
|
#history_tab,col1,col2,col3,PlaceHolder,col1_cont,col2_cont,col3_cont = st.session_state['historyTab']
|
|
|
|
#if 'latestImages' in st.session_state:
|
|
#for i in output_images:
|
|
##push the new image to the list of latest images and remove the oldest one
|
|
##remove the last index from the list\
|
|
#st.session_state['latestImages'].pop()
|
|
##add the new image to the start of the list
|
|
#st.session_state['latestImages'].insert(0, i)
|
|
#PlaceHolder.empty()
|
|
#with PlaceHolder.container():
|
|
#col1, col2, col3 = st.columns(3)
|
|
#col1_cont = st.container()
|
|
#col2_cont = st.container()
|
|
#col3_cont = st.container()
|
|
#images = st.session_state['latestImages']
|
|
#with col1_cont:
|
|
#with col1:
|
|
#[st.image(images[index]) for index in [0, 3, 6] if index < len(images)]
|
|
#with col2_cont:
|
|
#with col2:
|
|
#[st.image(images[index]) for index in [1, 4, 7] if index < len(images)]
|
|
#with col3_cont:
|
|
#with col3:
|
|
#[st.image(images[index]) for index in [2, 5, 8] if index < len(images)]
|
|
#historyGallery = st.empty()
|
|
|
|
## check if output_images length is the same as seeds length
|
|
#with gallery_tab:
|
|
#st.markdown(createHTMLGallery(output_images,seeds), unsafe_allow_html=True)
|
|
|
|
|
|
#st.session_state['historyTab'] = [history_tab,col1,col2,col3,PlaceHolder,col1_cont,col2_cont,col3_cont]
|
|
|
|
except (StopException, KeyError):
|
|
print(f"Received Streamlit StopException")
|
|
|
|
# this will render all the images at the end of the generation but its better if its moved to a second tab inside col2 and shown as a gallery.
|
|
# use the current col2 first tab to show the preview_img and update it as its generated.
|
|
#preview_image.image(output_images)
|
|
|
|
#on import run init
|
|
def createHTMLGallery(images,info):
|
|
html3 = """
|
|
<div class="gallery-history" style="
|
|
display: flex;
|
|
flex-wrap: wrap;
|
|
align-items: flex-start;">
|
|
"""
|
|
mkdwn_array = []
|
|
for i in images:
|
|
try:
|
|
seed = info[images.index(i)]
|
|
except:
|
|
seed = ' '
|
|
image_io = BytesIO()
|
|
i.save(image_io, 'PNG')
|
|
width, height = i.size
|
|
#get random number for the id
|
|
image_id = "%s" % (str(images.index(i)))
|
|
(data, mimetype) = STImage._normalize_to_bytes(image_io.getvalue(), width, 'auto')
|
|
this_file = in_memory_file_manager.add(data, mimetype, image_id)
|
|
img_str = this_file.url
|
|
#img_str = 'data:image/png;base64,' + b64encode(image_io.getvalue()).decode('ascii')
|
|
#get image size
|
|
|
|
#make sure the image is not bigger then 150px but keep the aspect ratio
|
|
if width > 150:
|
|
height = int(height * (150/width))
|
|
width = 150
|
|
if height > 150:
|
|
width = int(width * (150/height))
|
|
height = 150
|
|
|
|
#mkdwn = f"""<img src="{img_str}" alt="Image" with="200" height="200" />"""
|
|
mkdwn = f'''<div class="gallery" style="margin: 3px;" >
|
|
<a href="{img_str}">
|
|
<img src="{img_str}" alt="Image" width="{width}" height="{height}">
|
|
</a>
|
|
<div class="desc" style="text-align: center; opacity: 40%;">{seed}</div>
|
|
</div>
|
|
'''
|
|
mkdwn_array.append(mkdwn)
|
|
html3 += "".join(mkdwn_array)
|
|
html3 += '</div>'
|
|
return html3 |