mirror of
https://github.com/Sygil-Dev/sygil-webui.git
synced 2025-01-05 19:04:06 +03:00
b8d634455b
# Conflicts: # scripts/sd_utils.py # scripts/txt2img.py
814 lines
35 KiB
Python
814 lines
35 KiB
Python
import inspect
|
|
from typing import Callable, List, Optional, Union
|
|
from pathlib import Path
|
|
from torchvision.transforms.functional import pil_to_tensor
|
|
import librosa
|
|
from PIL import Image
|
|
from torchvision.io import write_video
|
|
import numpy as np
|
|
import time
|
|
import json
|
|
|
|
import torch
|
|
from diffusers import ModelMixin
|
|
from diffusers.configuration_utils import FrozenDict
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
from diffusers.pipeline_utils import DiffusionPipeline
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
from diffusers.utils import deprecate, logging
|
|
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
|
|
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
|
from torch import nn
|
|
|
|
from .upsampling import RealESRGANModel
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
def get_spec_norm(wav, sr, n_mels=512, hop_length=704):
|
|
"""Obtain maximum value for each time-frame in Mel Spectrogram,
|
|
and normalize between 0 and 1
|
|
|
|
Borrowed from lucid sonic dreams repo. In there, they programatically determine hop length
|
|
but I really didn't understand what was going on so I removed it and hard coded the output.
|
|
"""
|
|
|
|
# Generate Mel Spectrogram
|
|
spec_raw = librosa.feature.melspectrogram(y=wav, sr=sr, n_mels=n_mels, hop_length=hop_length)
|
|
|
|
# Obtain maximum value per time-frame
|
|
spec_max = np.amax(spec_raw, axis=0)
|
|
|
|
# Normalize all values between 0 and 1
|
|
spec_norm = (spec_max - np.min(spec_max)) / np.ptp(spec_max)
|
|
|
|
return spec_norm
|
|
|
|
|
|
def get_timesteps_arr(audio_filepath, offset, duration, fps=30, margin=(1.0, 5.0)):
|
|
"""Get the array that will be used to determine how much to interpolate between images.
|
|
|
|
Normally, this is just a linspace between 0 and 1 for the number of frames to generate. In this case,
|
|
we want to use the amplitude of the audio to determine how much to interpolate between images.
|
|
|
|
So, here we:
|
|
1. Load the audio file
|
|
2. Split the audio into harmonic and percussive components
|
|
3. Get the normalized amplitude of the percussive component, resized to the number of frames
|
|
4. Get the cumulative sum of the amplitude array
|
|
5. Normalize the cumulative sum between 0 and 1
|
|
6. Return the array
|
|
|
|
I honestly have no clue what I'm doing here. Suggestions welcome.
|
|
"""
|
|
y, sr = librosa.load(audio_filepath, offset=offset, duration=duration)
|
|
wav_harmonic, wav_percussive = librosa.effects.hpss(y, margin=margin)
|
|
|
|
# Apparently n_mels is supposed to be input shape but I don't think it matters here?
|
|
frame_duration = int(sr / fps)
|
|
wav_norm = get_spec_norm(wav_percussive, sr, n_mels=512, hop_length=frame_duration)
|
|
amplitude_arr = np.resize(wav_norm, int(duration * fps))
|
|
T = np.cumsum(amplitude_arr)
|
|
T /= T[-1]
|
|
T[0] = 0.0
|
|
return T
|
|
|
|
|
|
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
|
|
"""helper function to spherically interpolate two arrays v1 v2"""
|
|
|
|
if not isinstance(v0, np.ndarray):
|
|
inputs_are_torch = True
|
|
input_device = v0.device
|
|
v0 = v0.cpu().numpy()
|
|
v1 = v1.cpu().numpy()
|
|
|
|
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
|
if np.abs(dot) > DOT_THRESHOLD:
|
|
v2 = (1 - t) * v0 + t * v1
|
|
else:
|
|
theta_0 = np.arccos(dot)
|
|
sin_theta_0 = np.sin(theta_0)
|
|
theta_t = theta_0 * t
|
|
sin_theta_t = np.sin(theta_t)
|
|
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
|
s1 = sin_theta_t / sin_theta_0
|
|
v2 = s0 * v0 + s1 * v1
|
|
|
|
if inputs_are_torch:
|
|
v2 = torch.from_numpy(v2).to(input_device)
|
|
|
|
return v2
|
|
|
|
|
|
def make_video_pyav(
|
|
frames_or_frame_dir: Union[str, Path, torch.Tensor],
|
|
audio_filepath: Union[str, Path] = None,
|
|
fps: int = 30,
|
|
audio_offset: int = 0,
|
|
audio_duration: int = 2,
|
|
sr: int = 22050,
|
|
output_filepath: Union[str, Path] = "output.mp4",
|
|
glob_pattern: str = "*.png",
|
|
):
|
|
"""
|
|
TODO - docstring here
|
|
|
|
frames_or_frame_dir: (Union[str, Path, torch.Tensor]):
|
|
Either a directory of images, or a tensor of shape (T, C, H, W) in range [0, 255].
|
|
"""
|
|
|
|
# Torchvision write_video doesn't support pathlib paths
|
|
output_filepath = str(output_filepath)
|
|
|
|
if isinstance(frames_or_frame_dir, (str, Path)):
|
|
frames = None
|
|
for img in sorted(Path(frames_or_frame_dir).glob(glob_pattern)):
|
|
frame = pil_to_tensor(Image.open(img)).unsqueeze(0)
|
|
frames = frame if frames is None else torch.cat([frames, frame])
|
|
else:
|
|
|
|
frames = frames_or_frame_dir
|
|
|
|
# TCHW -> THWC
|
|
frames = frames.permute(0, 2, 3, 1)
|
|
|
|
if audio_filepath:
|
|
# Read audio, convert to tensor
|
|
audio, sr = librosa.load(audio_filepath, sr=sr, mono=True, offset=audio_offset, duration=audio_duration)
|
|
audio_tensor = torch.tensor(audio).unsqueeze(0)
|
|
|
|
write_video(
|
|
output_filepath,
|
|
frames,
|
|
fps=fps,
|
|
audio_array=audio_tensor,
|
|
audio_fps=sr,
|
|
audio_codec="aac",
|
|
options={"crf": "10", "pix_fmt": "yuv420p"},
|
|
)
|
|
else:
|
|
write_video(output_filepath, frames, fps=fps, options={"crf": "10", "pix_fmt": "yuv420p"})
|
|
|
|
return output_filepath
|
|
|
|
|
|
class StableDiffusionWalkPipeline(DiffusionPipeline):
|
|
r"""
|
|
Pipeline for generating videos by interpolating Stable Diffusion's latent space.
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
text_encoder ([`CLIPTextModel`]):
|
|
Frozen text-encoder. Stable Diffusion uses the text portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
tokenizer (`CLIPTokenizer`):
|
|
Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
|
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
|
feature_extractor ([`CLIPFeatureExtractor`]):
|
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
|
safety_checker: StableDiffusionSafetyChecker,
|
|
feature_extractor: CLIPFeatureExtractor,
|
|
):
|
|
super().__init__()
|
|
|
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
|
deprecation_message = (
|
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
|
" file"
|
|
)
|
|
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
|
new_config = dict(scheduler.config)
|
|
new_config["steps_offset"] = 1
|
|
scheduler._internal_dict = FrozenDict(new_config)
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
|
|
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
|
r"""
|
|
Enable sliced attention computation.
|
|
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
|
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
|
Args:
|
|
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
|
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
|
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
|
`attention_head_dim` must be a multiple of `slice_size`.
|
|
"""
|
|
if slice_size == "auto":
|
|
# half the attention head size is usually a good trade-off between
|
|
# speed and memory
|
|
slice_size = self.unet.config.attention_head_dim // 2
|
|
self.unet.set_attention_slice(slice_size)
|
|
|
|
def disable_attention_slicing(self):
|
|
r"""
|
|
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
|
back to computing attention in one step.
|
|
"""
|
|
# set slice_size = `None` to disable `attention slicing`
|
|
self.enable_attention_slicing(None)
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
prompt: Optional[Union[str, List[str]]] = None,
|
|
height: int = 512,
|
|
width: int = 512,
|
|
num_inference_steps: int = 50,
|
|
guidance_scale: float = 7.5,
|
|
eta: float = 0.0,
|
|
generator: Optional[torch.Generator] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
callback_steps: Optional[int] = 1,
|
|
text_embeddings: Optional[torch.FloatTensor] = None,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
Args:
|
|
prompt (`str` or `List[str]`):
|
|
The prompt or prompts to guide the image generation.
|
|
height (`int`, *optional*, defaults to 512):
|
|
The height in pixels of the generated image.
|
|
width (`int`, *optional*, defaults to 512):
|
|
The width in pixels of the generated image.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
generator (`torch.Generator`, *optional*):
|
|
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
|
deterministic.
|
|
latents (`torch.FloatTensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
plain tuple.
|
|
callback (`Callable`, *optional*):
|
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
|
called at every step.
|
|
text_embeddings(`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings.
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
|
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
(nsfw) content, according to the `safety_checker`.
|
|
"""
|
|
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|
|
|
if (callback_steps is None) or (
|
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
|
):
|
|
raise ValueError(
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|
f" {type(callback_steps)}."
|
|
)
|
|
|
|
if text_embeddings is None:
|
|
if isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
# get prompt text embeddings
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
|
|
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
|
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
|
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
|
else:
|
|
batch_size = text_embeddings.shape[0]
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance:
|
|
# HACK - Not setting text_input_ids here when walking, so hard coding to max length of tokenizer
|
|
# TODO - Determine if this is OK to do
|
|
# max_length = text_input_ids.shape[-1]
|
|
max_length = self.tokenizer.model_max_length
|
|
uncond_input = self.tokenizer(
|
|
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
|
)
|
|
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
|
|
|
# For classifier free guidance, we need to do two forward passes.
|
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|
# to avoid doing two forward passes
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
|
|
|
# get the initial random noise unless the user supplied it
|
|
|
|
# Unlike in other pipelines, latents need to be generated in the target device
|
|
# for 1-to-1 results reproducibility with the CompVis implementation.
|
|
# However this currently doesn't work in `mps`.
|
|
latents_device = "cpu" if self.device.type == "mps" else self.device
|
|
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
|
|
if latents is None:
|
|
latents = torch.randn(
|
|
latents_shape,
|
|
generator=generator,
|
|
device=latents_device,
|
|
dtype=text_embeddings.dtype,
|
|
)
|
|
else:
|
|
if latents.shape != latents_shape:
|
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
|
latents = latents.to(latents_device)
|
|
|
|
# set timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps)
|
|
|
|
# Some schedulers like PNDM have timesteps as arrays
|
|
# It's more optimized to move all timesteps to correct device beforehand
|
|
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
|
|
|
# scale the initial noise by the standard deviation required by the scheduler
|
|
latents = latents * self.scheduler.init_noise_sigma
|
|
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
|
# and should be between [0, 1]
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
|
|
|
# call the callback, if provided
|
|
if callback is not None and i % callback_steps == 0:
|
|
callback(i, t, latents)
|
|
|
|
latents = 1 / 0.18215 * latents
|
|
image = self.vae.decode(latents).sample
|
|
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
|
|
|
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
|
|
image, has_nsfw_concept = self.safety_checker(
|
|
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
|
|
)
|
|
|
|
if output_type == "pil":
|
|
image = self.numpy_to_pil(image)
|
|
|
|
if not return_dict:
|
|
return (image, has_nsfw_concept)
|
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
|
|
|
def generate_inputs(self, prompt_a, prompt_b, seed_a, seed_b, noise_shape, T, batch_size):
|
|
embeds_a = self.embed_text(prompt_a)
|
|
embeds_b = self.embed_text(prompt_b)
|
|
latents_a = torch.randn(
|
|
noise_shape,
|
|
device=self.device,
|
|
generator=torch.Generator(device=self.device).manual_seed(seed_a),
|
|
)
|
|
latents_b = torch.randn(
|
|
noise_shape,
|
|
device=self.device,
|
|
generator=torch.Generator(device=self.device).manual_seed(seed_b),
|
|
)
|
|
|
|
batch_idx = 0
|
|
embeds_batch, noise_batch = None, None
|
|
for i, t in enumerate(T):
|
|
embeds = torch.lerp(embeds_a, embeds_b, t)
|
|
noise = slerp(float(t), latents_a, latents_b)
|
|
|
|
embeds_batch = embeds if embeds_batch is None else torch.cat([embeds_batch, embeds])
|
|
noise_batch = noise if noise_batch is None else torch.cat([noise_batch, noise])
|
|
batch_is_ready = embeds_batch.shape[0] == batch_size or i + 1 == T.shape[0]
|
|
if not batch_is_ready:
|
|
continue
|
|
yield batch_idx, embeds_batch, noise_batch
|
|
batch_idx += 1
|
|
del embeds_batch, noise_batch
|
|
torch.cuda.empty_cache()
|
|
embeds_batch, noise_batch = None, None
|
|
|
|
def generate_interpolation_clip(
|
|
self,
|
|
prompt_a: str,
|
|
prompt_b: str,
|
|
seed_a: int,
|
|
seed_b: int,
|
|
num_interpolation_steps: int = 5,
|
|
save_path: Union[str, Path] = "outputs/",
|
|
num_inference_steps: int = 50,
|
|
guidance_scale: float = 7.5,
|
|
eta: float = 0.0,
|
|
height: int = 512,
|
|
width: int = 512,
|
|
upsample: bool = False,
|
|
batch_size: int = 1,
|
|
image_file_ext: str = ".png",
|
|
T: np.ndarray = None,
|
|
skip: int = 0,
|
|
):
|
|
save_path = Path(save_path)
|
|
save_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
T = T if T is not None else np.linspace(0.0, 1.0, num_interpolation_steps)
|
|
if T.shape[0] != num_interpolation_steps:
|
|
raise ValueError(f"Unexpected T shape, got {T.shape}, expected dim 0 to be {num_interpolation_steps}")
|
|
|
|
if upsample:
|
|
if getattr(self, "upsampler", None) is None:
|
|
self.upsampler = RealESRGANModel.from_pretrained("nateraw/real-esrgan")
|
|
self.upsampler.to(self.device)
|
|
|
|
batch_generator = self.generate_inputs(
|
|
prompt_a,
|
|
prompt_b,
|
|
seed_a,
|
|
seed_b,
|
|
(1, self.unet.in_channels, height // 8, width // 8),
|
|
T[skip:],
|
|
batch_size,
|
|
)
|
|
|
|
frame_index = skip
|
|
for _, embeds_batch, noise_batch in batch_generator:
|
|
with torch.autocast("cuda"):
|
|
outputs = self(
|
|
latents=noise_batch,
|
|
text_embeddings=embeds_batch,
|
|
height=height,
|
|
width=width,
|
|
guidance_scale=guidance_scale,
|
|
eta=eta,
|
|
num_inference_steps=num_inference_steps,
|
|
output_type="pil" if not upsample else "numpy",
|
|
)["sample"]
|
|
|
|
for image in outputs:
|
|
frame_filepath = save_path / (f"frame%06d{image_file_ext}" % frame_index)
|
|
image = image if not upsample else self.upsampler(image)
|
|
image.save(frame_filepath)
|
|
frame_index += 1
|
|
|
|
def walk(
|
|
self,
|
|
prompts: Optional[List[str]] = None,
|
|
seeds: Optional[List[int]] = None,
|
|
num_interpolation_steps: Optional[Union[int, List[int]]] = 5, # int or list of int
|
|
output_dir: Optional[str] = "./dreams",
|
|
name: Optional[str] = None,
|
|
image_file_ext: Optional[str] = ".png",
|
|
fps: Optional[int] = 30,
|
|
num_inference_steps: Optional[int] = 50,
|
|
guidance_scale: Optional[float] = 7.5,
|
|
eta: Optional[float] = 0.0,
|
|
height: Optional[int] = 512,
|
|
width: Optional[int] = 512,
|
|
upsample: Optional[bool] = False,
|
|
batch_size: Optional[int] = 1,
|
|
resume: Optional[bool] = False,
|
|
audio_filepath: str = None,
|
|
audio_start_sec: Optional[Union[int, float]] = None,
|
|
):
|
|
"""Generate a video from a sequence of prompts and seeds. Optionally, add audio to the
|
|
video to interpolate to the intensity of the audio.
|
|
|
|
Args:
|
|
prompts (Optional[List[str]], optional):
|
|
list of text prompts. Defaults to None.
|
|
seeds (Optional[List[int]], optional):
|
|
list of random seeds corresponding to prompts. Defaults to None.
|
|
num_interpolation_steps (Union[int, List[int]], *optional*):
|
|
How many interpolation steps between each prompt. Defaults to None.
|
|
output_dir (Optional[str], optional):
|
|
Where to save the video. Defaults to './dreams'.
|
|
name (Optional[str], optional):
|
|
Name of the subdirectory of output_dir. Defaults to None.
|
|
image_file_ext (Optional[str], *optional*, defaults to '.png'):
|
|
The extension to use when writing video frames.
|
|
fps (Optional[int], *optional*, defaults to 30):
|
|
The frames per second in the resulting output videos.
|
|
num_inference_steps (Optional[int], *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
guidance_scale (Optional[float], *optional*, defaults to 7.5):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
eta (Optional[float], *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
height (Optional[int], *optional*, defaults to 512):
|
|
height of the images to generate.
|
|
width (Optional[int], *optional*, defaults to 512):
|
|
width of the images to generate.
|
|
upsample (Optional[bool], *optional*, defaults to False):
|
|
When True, upsamples images with realesrgan.
|
|
batch_size (Optional[int], *optional*, defaults to 1):
|
|
Number of images to generate at once.
|
|
resume (Optional[bool], *optional*, defaults to False):
|
|
When True, resumes from the last frame in the output directory based
|
|
on available prompt config. Requires you to provide the `name` argument.
|
|
audio_filepath (str, *optional*, defaults to None):
|
|
Optional path to an audio file to influence the interpolation rate.
|
|
audio_start_sec (Optional[Union[int, float]], *optional*, defaults to 0):
|
|
Global start time of the provided audio_filepath.
|
|
|
|
This function will create sub directories for each prompt and seed pair.
|
|
|
|
For example, if you provide the following prompts and seeds:
|
|
|
|
```
|
|
prompts = ['a', 'b', 'c']
|
|
seeds = [1, 2, 3]
|
|
num_interpolation_steps = 5
|
|
output_dir = 'output_dir'
|
|
name = 'name'
|
|
fps = 5
|
|
```
|
|
|
|
Then the following directories will be created:
|
|
|
|
```
|
|
output_dir
|
|
├── name
|
|
│ ├── name_000000
|
|
│ │ ├── frame000000.png
|
|
│ │ ├── ...
|
|
│ │ ├── frame000004.png
|
|
│ │ ├── name_000000.mp4
|
|
│ ├── name_000001
|
|
│ │ ├── frame000000.png
|
|
│ │ ├── ...
|
|
│ │ ├── frame000004.png
|
|
│ │ ├── name_000001.mp4
|
|
│ ├── ...
|
|
│ ├── name.mp4
|
|
| |── prompt_config.json
|
|
```
|
|
|
|
Returns:
|
|
str: The resulting video filepath. This video includes all sub directories' video clips.
|
|
"""
|
|
|
|
output_path = Path(output_dir)
|
|
|
|
name = name or time.strftime("%Y%m%d-%H%M%S")
|
|
save_path_root = output_path / name
|
|
save_path_root.mkdir(parents=True, exist_ok=True)
|
|
|
|
# Where the final video of all the clips combined will be saved
|
|
output_filepath = save_path_root / f"{name}.mp4"
|
|
|
|
# If using same number of interpolation steps between, we turn into list
|
|
if not resume and isinstance(num_interpolation_steps, int):
|
|
num_interpolation_steps = [num_interpolation_steps] * (len(prompts) - 1)
|
|
|
|
if not resume:
|
|
audio_start_sec = audio_start_sec or 0
|
|
|
|
# Save/reload prompt config
|
|
prompt_config_path = save_path_root / "prompt_config.json"
|
|
if not resume:
|
|
prompt_config_path.write_text(
|
|
json.dumps(
|
|
dict(
|
|
prompts=prompts,
|
|
seeds=seeds,
|
|
num_interpolation_steps=num_interpolation_steps,
|
|
fps=fps,
|
|
num_inference_steps=num_inference_steps,
|
|
guidance_scale=guidance_scale,
|
|
eta=eta,
|
|
upsample=upsample,
|
|
height=height,
|
|
width=width,
|
|
audio_filepath=audio_filepath,
|
|
audio_start_sec=audio_start_sec,
|
|
),
|
|
indent=2,
|
|
sort_keys=False,
|
|
)
|
|
)
|
|
else:
|
|
data = json.load(open(prompt_config_path))
|
|
prompts = data["prompts"]
|
|
seeds = data["seeds"]
|
|
num_interpolation_steps = data["num_interpolation_steps"]
|
|
fps = data["fps"]
|
|
num_inference_steps = data["num_inference_steps"]
|
|
guidance_scale = data["guidance_scale"]
|
|
eta = data["eta"]
|
|
upsample = data["upsample"]
|
|
height = data["height"]
|
|
width = data["width"]
|
|
audio_filepath = data["audio_filepath"]
|
|
audio_start_sec = data["audio_start_sec"]
|
|
|
|
for i, (prompt_a, prompt_b, seed_a, seed_b, num_step) in enumerate(
|
|
zip(prompts, prompts[1:], seeds, seeds[1:], num_interpolation_steps)
|
|
):
|
|
# {name}_000000 / {name}_000001 / ...
|
|
save_path = save_path_root / f"{name}_{i:06d}"
|
|
|
|
# Where the individual clips will be saved
|
|
step_output_filepath = save_path / f"{name}_{i:06d}.mp4"
|
|
|
|
# Determine if we need to resume from a previous run
|
|
skip = 0
|
|
if resume:
|
|
if step_output_filepath.exists():
|
|
print(f"Skipping {save_path} because frames already exist")
|
|
continue
|
|
|
|
existing_frames = sorted(save_path.glob(f"*{image_file_ext}"))
|
|
if existing_frames:
|
|
skip = int(existing_frames[-1].stem[-6:]) + 1
|
|
if skip + 1 >= num_step:
|
|
print(f"Skipping {save_path} because frames already exist")
|
|
continue
|
|
print(f"Resuming {save_path.name} from frame {skip}")
|
|
|
|
audio_offset = audio_start_sec + sum(num_interpolation_steps[:i]) / fps
|
|
audio_duration = num_step / fps
|
|
|
|
self.generate_interpolation_clip(
|
|
prompt_a,
|
|
prompt_b,
|
|
seed_a,
|
|
seed_b,
|
|
num_interpolation_steps=num_step,
|
|
save_path=save_path,
|
|
num_inference_steps=num_inference_steps,
|
|
guidance_scale=guidance_scale,
|
|
eta=eta,
|
|
height=height,
|
|
width=width,
|
|
upsample=upsample,
|
|
batch_size=batch_size,
|
|
skip=skip,
|
|
T=get_timesteps_arr(
|
|
audio_filepath,
|
|
offset=audio_offset,
|
|
duration=audio_duration,
|
|
fps=fps,
|
|
margin=(1.0, 5.0),
|
|
)
|
|
if audio_filepath
|
|
else None,
|
|
)
|
|
make_video_pyav(
|
|
save_path,
|
|
audio_filepath=audio_filepath,
|
|
fps=fps,
|
|
output_filepath=step_output_filepath,
|
|
glob_pattern=f"*{image_file_ext}",
|
|
audio_offset=audio_offset,
|
|
audio_duration=audio_duration,
|
|
sr=44100,
|
|
)
|
|
|
|
return make_video_pyav(
|
|
save_path_root,
|
|
audio_filepath=audio_filepath,
|
|
fps=fps,
|
|
audio_offset=audio_start_sec,
|
|
audio_duration=sum(num_interpolation_steps) / fps,
|
|
output_filepath=output_filepath,
|
|
glob_pattern=f"**/*{image_file_ext}",
|
|
sr=44100,
|
|
)
|
|
|
|
def embed_text(self, text):
|
|
"""Helper to embed some text"""
|
|
with torch.autocast("cuda"):
|
|
text_input = self.tokenizer(
|
|
text,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
with torch.no_grad():
|
|
embed = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
|
return embed
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, *args, tiled=False, **kwargs):
|
|
"""Same as diffusers `from_pretrained` but with tiled option, which makes images tilable"""
|
|
if tiled:
|
|
|
|
def patch_conv(**patch):
|
|
cls = nn.Conv2d
|
|
init = cls.__init__
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
return init(self, *args, **kwargs, **patch)
|
|
|
|
cls.__init__ = __init__
|
|
|
|
patch_conv(padding_mode="circular")
|
|
|
|
return super().from_pretrained(*args, **kwargs)
|
|
|
|
|
|
class NoCheck(ModelMixin):
|
|
"""Can be used in place of safety checker. Use responsibly and at your own risk."""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.register_parameter(name="asdf", param=torch.nn.Parameter(torch.randn(3)))
|
|
|
|
def forward(self, images=None, **kwargs):
|
|
return images, [False]
|