sygil-webui/scripts/sd_utils.py

1600 lines
71 KiB
Python

# base webui import and utils.
from webui_streamlit import st
# streamlit imports
#other imports
import warnings
import json
import base64
import os, sys, re, random, datetime, time, math
from PIL import Image, ImageFont, ImageDraw, ImageFilter
from PIL.PngImagePlugin import PngInfo
from scipy import integrate
import torch
from torchdiffeq import odeint
import k_diffusion as K
import math
import mimetypes
import numpy as np
import pynvml
import threading
import torch
from torch import autocast
from torchvision import transforms
import torch.nn as nn
from omegaconf import OmegaConf
import yaml
from pathlib import Path
from contextlib import nullcontext
from einops import rearrange
from ldm.util import instantiate_from_config
from retry import retry
from slugify import slugify
import skimage
import piexif
import piexif.helper
from tqdm import trange
# Temp imports
# end of imports
#---------------------------------------------------------------------------------------------------------------
try:
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
from transformers import logging
logging.set_verbosity_error()
except:
pass
# remove some annoying deprecation warnings that show every now and then.
warnings.filterwarnings("ignore", category=DeprecationWarning)
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI
mimetypes.init()
mimetypes.add_type('application/javascript', '.js')
# some of those options should not be changed at all because they would break the model, so I removed them from options.
opt_C = 4
opt_f = 8
# should and will be moved to a settings menu in the UI at some point
grid_format = [s.lower() for s in st.session_state["defaults"].general.grid_format.split(':')]
grid_lossless = False
grid_quality = 100
if grid_format[0] == 'png':
grid_ext = 'png'
grid_format = 'png'
elif grid_format[0] in ['jpg', 'jpeg']:
grid_quality = int(grid_format[1]) if len(grid_format) > 1 else 100
grid_ext = 'jpg'
grid_format = 'jpeg'
elif grid_format[0] == 'webp':
grid_quality = int(grid_format[1]) if len(grid_format) > 1 else 100
grid_ext = 'webp'
grid_format = 'webp'
if grid_quality < 0: # e.g. webp:-100 for lossless mode
grid_lossless = True
grid_quality = abs(grid_quality)
# should and will be moved to a settings menu in the UI at some point
save_format = [s.lower() for s in st.session_state["defaults"].general.save_format.split(':')]
save_lossless = False
save_quality = 100
if save_format[0] == 'png':
save_ext = 'png'
save_format = 'png'
elif save_format[0] in ['jpg', 'jpeg']:
save_quality = int(save_format[1]) if len(save_format) > 1 else 100
save_ext = 'jpg'
save_format = 'jpeg'
elif save_format[0] == 'webp':
save_quality = int(save_format[1]) if len(save_format) > 1 else 100
save_ext = 'webp'
save_format = 'webp'
if save_quality < 0: # e.g. webp:-100 for lossless mode
save_lossless = True
save_quality = abs(save_quality)
# this should force GFPGAN and RealESRGAN onto the selected gpu as well
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = str(st.session_state["defaults"].general.gpu)
@retry(tries=5)
def load_models(continue_prev_run = False, use_GFPGAN=False, use_RealESRGAN=False, RealESRGAN_model="RealESRGAN_x4plus",
CustomModel_available=False, custom_model="Stable Diffusion v1.4"):
"""Load the different models. We also reuse the models that are already in memory to speed things up instead of loading them again. """
print ("Loading models.")
st.session_state["progress_bar_text"].text("Loading models...")
# Generate random run ID
# Used to link runs linked w/ continue_prev_run which is not yet implemented
# Use URL and filesystem safe version just in case.
st.session_state["run_id"] = base64.urlsafe_b64encode(
os.urandom(6)
).decode("ascii")
# check what models we want to use and if the they are already loaded.
if use_GFPGAN:
if "GFPGAN" in st.session_state:
print("GFPGAN already loaded")
else:
# Load GFPGAN
if os.path.exists(st.session_state["defaults"].general.GFPGAN_dir):
try:
st.session_state["GFPGAN"] = load_GFPGAN()
print("Loaded GFPGAN")
except Exception:
import traceback
print("Error loading GFPGAN:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
else:
if "GFPGAN" in st.session_state:
del st.session_state["GFPGAN"]
if use_RealESRGAN:
if "RealESRGAN" in st.session_state and st.session_state["RealESRGAN"].model.name == RealESRGAN_model:
print("RealESRGAN already loaded")
else:
#Load RealESRGAN
try:
# We first remove the variable in case it has something there,
# some errors can load the model incorrectly and leave things in memory.
del st.session_state["RealESRGAN"]
except KeyError:
pass
if os.path.exists(st.session_state["defaults"].general.RealESRGAN_dir):
# st.session_state is used for keeping the models in memory across multiple pages or runs.
st.session_state["RealESRGAN"] = load_RealESRGAN(RealESRGAN_model)
print("Loaded RealESRGAN with model "+ st.session_state["RealESRGAN"].model.name)
else:
if "RealESRGAN" in st.session_state:
del st.session_state["RealESRGAN"]
if "model" in st.session_state:
if "model" in st.session_state and st.session_state["custom_model"] == custom_model:
print("Model already loaded")
else:
try:
del st.session_state["model"]
except KeyError:
pass
config = OmegaConf.load(st.session_state["defaults"].general.default_model_config)
if custom_model == st.session_state["defaults"].general.default_model:
model = load_model_from_config(config, st.session_state["defaults"].general.default_model_path)
else:
model = load_model_from_config(config, os.path.join("models","custom", f"{custom_model}.ckpt"))
st.session_state["custom_model"] = custom_model
st.session_state["device"] = torch.device(f"cuda:{defaults.general.gpu}") if torch.cuda.is_available() else torch.device("cpu")
st.session_state["model"] = (model if st.session_state["defaults"].general.no_half else model.half()).to(st.session_state["device"] )
else:
config = OmegaConf.load(st.session_state["defaults"].general.default_model_config)
if custom_model == st.session_state["defaults"].general.default_model:
model = load_model_from_config(config, st.session_state["defaults"].general.default_model_path)
else:
model = load_model_from_config(config, os.path.join("models","custom", f"{custom_model}.ckpt"))
st.session_state["custom_model"] = custom_model
st.session_state["device"] = torch.device(f"cuda:{st.session_state['defaults'].general.gpu}") if torch.cuda.is_available() else torch.device("cpu")
st.session_state["model"] = (model if st.session_state['defaults'].general.no_half else model.half()).to(st.session_state["device"] )
print("Model loaded.")
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
return model
def load_sd_from_config(ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
return sd
class MemUsageMonitor(threading.Thread):
stop_flag = False
max_usage = 0
total = -1
def __init__(self, name):
threading.Thread.__init__(self)
self.name = name
def run(self):
try:
pynvml.nvmlInit()
except:
print(f"[{self.name}] Unable to initialize NVIDIA management. No memory stats. \n")
return
print(f"[{self.name}] Recording max memory usage...\n")
handle = pynvml.nvmlDeviceGetHandleByIndex(st.session_state['defaults'].general.gpu)
self.total = pynvml.nvmlDeviceGetMemoryInfo(handle).total
while not self.stop_flag:
m = pynvml.nvmlDeviceGetMemoryInfo(handle)
self.max_usage = max(self.max_usage, m.used)
# print(self.max_usage)
time.sleep(0.1)
print(f"[{self.name}] Stopped recording.\n")
pynvml.nvmlShutdown()
def read(self):
return self.max_usage, self.total
def stop(self):
self.stop_flag = True
def read_and_stop(self):
self.stop_flag = True
return self.max_usage, self.total
class CFGMaskedDenoiser(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, x, sigma, uncond, cond, cond_scale, mask, x0, xi):
x_in = x
x_in = torch.cat([x_in] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
denoised = uncond + (cond - uncond) * cond_scale
if mask is not None:
assert x0 is not None
img_orig = x0
mask_inv = 1. - mask
denoised = (img_orig * mask_inv) + (mask * denoised)
return denoised
class CFGDenoiser(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, x, sigma, uncond, cond, cond_scale):
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
return uncond + (cond - uncond) * cond_scale
def append_zero(x):
return torch.cat([x, x.new_zeros([1])])
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
return x[(...,) + (None,) * dims_to_append]
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
"""Constructs the noise schedule of Karras et al. (2022)."""
ramp = torch.linspace(0, 1, n)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return append_zero(sigmas).to(device)
#
# helper fft routines that keep ortho normalization and auto-shift before and after fft
def _fft2(data):
if data.ndim > 2: # has channels
out_fft = np.zeros((data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128)
for c in range(data.shape[2]):
c_data = data[:,:,c]
out_fft[:,:,c] = np.fft.fft2(np.fft.fftshift(c_data),norm="ortho")
out_fft[:,:,c] = np.fft.ifftshift(out_fft[:,:,c])
else: # one channel
out_fft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128)
out_fft[:,:] = np.fft.fft2(np.fft.fftshift(data),norm="ortho")
out_fft[:,:] = np.fft.ifftshift(out_fft[:,:])
return out_fft
def _ifft2(data):
if data.ndim > 2: # has channels
out_ifft = np.zeros((data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128)
for c in range(data.shape[2]):
c_data = data[:,:,c]
out_ifft[:,:,c] = np.fft.ifft2(np.fft.fftshift(c_data),norm="ortho")
out_ifft[:,:,c] = np.fft.ifftshift(out_ifft[:,:,c])
else: # one channel
out_ifft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128)
out_ifft[:,:] = np.fft.ifft2(np.fft.fftshift(data),norm="ortho")
out_ifft[:,:] = np.fft.ifftshift(out_ifft[:,:])
return out_ifft
def _get_gaussian_window(width, height, std=3.14, mode=0):
window_scale_x = float(width / min(width, height))
window_scale_y = float(height / min(width, height))
window = np.zeros((width, height))
x = (np.arange(width) / width * 2. - 1.) * window_scale_x
for y in range(height):
fy = (y / height * 2. - 1.) * window_scale_y
if mode == 0:
window[:, y] = np.exp(-(x**2+fy**2) * std)
else:
window[:, y] = (1/((x**2+1.) * (fy**2+1.))) ** (std/3.14) # hey wait a minute that's not gaussian
return window
def _get_masked_window_rgb(np_mask_grey, hardness=1.):
np_mask_rgb = np.zeros((np_mask_grey.shape[0], np_mask_grey.shape[1], 3))
if hardness != 1.:
hardened = np_mask_grey[:] ** hardness
else:
hardened = np_mask_grey[:]
for c in range(3):
np_mask_rgb[:,:,c] = hardened[:]
return np_mask_rgb
def get_matched_noise(_np_src_image, np_mask_rgb, noise_q, color_variation):
"""
Explanation:
Getting good results in/out-painting with stable diffusion can be challenging.
Although there are simpler effective solutions for in-painting, out-painting can be especially challenging because there is no color data
in the masked area to help prompt the generator. Ideally, even for in-painting we'd like work effectively without that data as well.
Provided here is my take on a potential solution to this problem.
By taking a fourier transform of the masked src img we get a function that tells us the presence and orientation of each feature scale in the unmasked src.
Shaping the init/seed noise for in/outpainting to the same distribution of feature scales, orientations, and positions increases output coherence
by helping keep features aligned. This technique is applicable to any continuous generation task such as audio or video, each of which can
be conceptualized as a series of out-painting steps where the last half of the input "frame" is erased. For multi-channel data such as color
or stereo sound the "color tone" or histogram of the seed noise can be matched to improve quality (using scikit-image currently)
This method is quite robust and has the added benefit of being fast independently of the size of the out-painted area.
The effects of this method include things like helping the generator integrate the pre-existing view distance and camera angle.
Carefully managing color and brightness with histogram matching is also essential to achieving good coherence.
noise_q controls the exponent in the fall-off of the distribution can be any positive number, lower values means higher detail (range > 0, default 1.)
color_variation controls how much freedom is allowed for the colors/palette of the out-painted area (range 0..1, default 0.01)
This code is provided as is under the Unlicense (https://unlicense.org/)
Although you have no obligation to do so, if you found this code helpful please find it in your heart to credit me [parlance-zz].
Questions or comments can be sent to parlance@fifth-harmonic.com (https://github.com/parlance-zz/)
This code is part of a new branch of a discord bot I am working on integrating with diffusers (https://github.com/parlance-zz/g-diffuser-bot)
"""
global DEBUG_MODE
global TMP_ROOT_PATH
width = _np_src_image.shape[0]
height = _np_src_image.shape[1]
num_channels = _np_src_image.shape[2]
np_src_image = _np_src_image[:] * (1. - np_mask_rgb)
np_mask_grey = (np.sum(np_mask_rgb, axis=2)/3.)
np_src_grey = (np.sum(np_src_image, axis=2)/3.)
all_mask = np.ones((width, height), dtype=bool)
img_mask = np_mask_grey > 1e-6
ref_mask = np_mask_grey < 1e-3
windowed_image = _np_src_image * (1.-_get_masked_window_rgb(np_mask_grey))
windowed_image /= np.max(windowed_image)
windowed_image += np.average(_np_src_image) * np_mask_rgb# / (1.-np.average(np_mask_rgb)) # rather than leave the masked area black, we get better results from fft by filling the average unmasked color
#windowed_image += np.average(_np_src_image) * (np_mask_rgb * (1.- np_mask_rgb)) / (1.-np.average(np_mask_rgb)) # compensate for darkening across the mask transition area
#_save_debug_img(windowed_image, "windowed_src_img")
src_fft = _fft2(windowed_image) # get feature statistics from masked src img
src_dist = np.absolute(src_fft)
src_phase = src_fft / src_dist
#_save_debug_img(src_dist, "windowed_src_dist")
noise_window = _get_gaussian_window(width, height, mode=1) # start with simple gaussian noise
noise_rgb = np.random.random_sample((width, height, num_channels))
noise_grey = (np.sum(noise_rgb, axis=2)/3.)
noise_rgb *= color_variation # the colorfulness of the starting noise is blended to greyscale with a parameter
for c in range(num_channels):
noise_rgb[:,:,c] += (1. - color_variation) * noise_grey
noise_fft = _fft2(noise_rgb)
for c in range(num_channels):
noise_fft[:,:,c] *= noise_window
noise_rgb = np.real(_ifft2(noise_fft))
shaped_noise_fft = _fft2(noise_rgb)
shaped_noise_fft[:,:,:] = np.absolute(shaped_noise_fft[:,:,:])**2 * (src_dist ** noise_q) * src_phase # perform the actual shaping
brightness_variation = 0.#color_variation # todo: temporarily tieing brightness variation to color variation for now
contrast_adjusted_np_src = _np_src_image[:] * (brightness_variation + 1.) - brightness_variation * 2.
# scikit-image is used for histogram matching, very convenient!
shaped_noise = np.real(_ifft2(shaped_noise_fft))
shaped_noise -= np.min(shaped_noise)
shaped_noise /= np.max(shaped_noise)
shaped_noise[img_mask,:] = skimage.exposure.match_histograms(shaped_noise[img_mask,:]**1., contrast_adjusted_np_src[ref_mask,:], channel_axis=1)
shaped_noise = _np_src_image[:] * (1. - np_mask_rgb) + shaped_noise * np_mask_rgb
#_save_debug_img(shaped_noise, "shaped_noise")
matched_noise = np.zeros((width, height, num_channels))
matched_noise = shaped_noise[:]
#matched_noise[all_mask,:] = skimage.exposure.match_histograms(shaped_noise[all_mask,:], _np_src_image[ref_mask,:], channel_axis=1)
#matched_noise = _np_src_image[:] * (1. - np_mask_rgb) + matched_noise * np_mask_rgb
#_save_debug_img(matched_noise, "matched_noise")
"""
todo:
color_variation doesnt have to be a single number, the overall color tone of the out-painted area could be param controlled
"""
return np.clip(matched_noise, 0., 1.)
#
def find_noise_for_image(model, device, init_image, prompt, steps=200, cond_scale=2.0, verbose=False, normalize=False, generation_callback=None):
image = np.array(init_image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
image = 2. * image - 1.
image = image.to(device)
x = model.get_first_stage_encoding(model.encode_first_stage(image))
uncond = model.get_learned_conditioning([''])
cond = model.get_learned_conditioning([prompt])
s_in = x.new_ones([x.shape[0]])
dnw = K.external.CompVisDenoiser(model)
sigmas = dnw.get_sigmas(steps).flip(0)
if verbose:
print(sigmas)
for i in trange(1, len(sigmas)):
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2)
cond_in = torch.cat([uncond, cond])
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
if i == 1:
t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))
else:
t = dnw.sigma_to_t(sigma_in)
eps = model.apply_model(x_in * c_in, t, cond=cond_in)
denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)
denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cond_scale
if i == 1:
d = (x - denoised) / (2 * sigmas[i])
else:
d = (x - denoised) / sigmas[i - 1]
if generation_callback is not None:
generation_callback(x, i)
dt = sigmas[i] - sigmas[i - 1]
x = x + d * dt
return x / sigmas[-1]
def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
"""Constructs an exponential noise schedule."""
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
return append_zero(sigmas)
def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
"""Constructs a continuous VP noise schedule."""
t = torch.linspace(1, eps_s, n, device=device)
sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1)
return append_zero(sigmas)
def to_d(x, sigma, denoised):
"""Converts a denoiser output to a Karras ODE derivative."""
return (x - denoised) / append_dims(sigma, x.ndim)
def linear_multistep_coeff(order, t, i, j):
if order - 1 > i:
raise ValueError(f'Order {order} too high for step {i}')
def fn(tau):
prod = 1.
for k in range(order):
if j == k:
continue
prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
return prod
return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]
class KDiffusionSampler:
def __init__(self, m, sampler):
self.model = m
self.model_wrap = K.external.CompVisDenoiser(m)
self.schedule = sampler
def get_sampler_name(self):
return self.schedule
def sample(self, S, conditioning, batch_size, shape, verbose, unconditional_guidance_scale, unconditional_conditioning, eta, x_T, img_callback=None, log_every_t=None):
sigmas = self.model_wrap.get_sigmas(S)
x = x_T * sigmas[0]
model_wrap_cfg = CFGDenoiser(self.model_wrap)
samples_ddim = None
samples_ddim = K.sampling.__dict__[f'sample_{self.schedule}'](model_wrap_cfg, x, sigmas,
extra_args={'cond': conditioning, 'uncond': unconditional_conditioning,
'cond_scale': unconditional_guidance_scale}, disable=False, callback=generation_callback)
#
return samples_ddim, None
@torch.no_grad()
def log_likelihood(model, x, sigma_min, sigma_max, extra_args=None, atol=1e-4, rtol=1e-4):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
v = torch.randint_like(x, 2) * 2 - 1
fevals = 0
def ode_fn(sigma, x):
nonlocal fevals
with torch.enable_grad():
x = x[0].detach().requires_grad_()
denoised = model(x, sigma * s_in, **extra_args)
d = to_d(x, sigma, denoised)
fevals += 1
grad = torch.autograd.grad((d * v).sum(), x)[0]
d_ll = (v * grad).flatten(1).sum(1)
return d.detach(), d_ll
x_min = x, x.new_zeros([x.shape[0]])
t = x.new_tensor([sigma_min, sigma_max])
sol = odeint(ode_fn, x_min, t, atol=atol, rtol=rtol, method='dopri5')
latent, delta_ll = sol[0][-1], sol[1][-1]
ll_prior = torch.distributions.Normal(0, sigma_max).log_prob(latent).flatten(1).sum(1)
return ll_prior + delta_ll, {'fevals': fevals}
def create_random_tensors(shape, seeds):
xs = []
for seed in seeds:
torch.manual_seed(seed)
# randn results depend on device; gpu and cpu get different results for same seed;
# the way I see it, it's better to do this on CPU, so that everyone gets same result;
# but the original script had it like this so i do not dare change it for now because
# it will break everyone's seeds.
xs.append(torch.randn(shape, device=st.session_state['defaults'].general.gpu))
x = torch.stack(xs)
return x
def torch_gc():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def load_GFPGAN():
model_name = 'GFPGANv1.3'
model_path = os.path.join(st.session_state['defaults'].general.GFPGAN_dir, 'experiments/pretrained_models', model_name + '.pth')
if not os.path.isfile(model_path):
raise Exception("GFPGAN model not found at path "+model_path)
sys.path.append(os.path.abspath(st.session_state['defaults'].general.GFPGAN_dir))
from gfpgan import GFPGANer
if st.session_state['defaults'].general.gfpgan_cpu or st.session_state['defaults'].general.extra_models_cpu:
instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cpu'))
elif st.session_state['defaults'].general.extra_models_gpu:
instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device(f"cuda:{st.session_state['defaults'].general.gfpgan_gpu}"))
else:
instance = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device(f"cuda:{st.session_state['defaults'].general.gpu}"))
return instance
def load_RealESRGAN(model_name: str):
from basicsr.archs.rrdbnet_arch import RRDBNet
RealESRGAN_models = {
'RealESRGAN_x4plus': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4),
'RealESRGAN_x4plus_anime_6B': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
}
model_path = os.path.join(st.session_state['defaults'].general.RealESRGAN_dir, 'experiments/pretrained_models', model_name + '.pth')
if not os.path.exists(os.path.join(st.session_state['defaults'].general.RealESRGAN_dir, "experiments","pretrained_models", f"{model_name}.pth")):
raise Exception(model_name+".pth not found at path "+model_path)
sys.path.append(os.path.abspath(st.session_state['defaults'].general.RealESRGAN_dir))
from realesrgan import RealESRGANer
if st.session_state['defaults'].general.esrgan_cpu or st.session_state['defaults'].general.extra_models_cpu:
instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=False) # cpu does not support half
instance.device = torch.device('cpu')
instance.model.to('cpu')
elif st.session_state['defaults'].general.extra_models_gpu:
instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=not st.session_state['defaults'].general.no_half, device=torch.device(f"cuda:{st.session_state['defaults'].general.esrgan_gpu}"))
else:
instance = RealESRGANer(scale=2, model_path=model_path, model=RealESRGAN_models[model_name], pre_pad=0, half=not st.session_state['defaults'].general.no_half, device=torch.device(f"cuda:{st.session_state['defaults'].general.gpu}"))
instance.model.name = model_name
return instance
#
def load_LDSR(checking=False):
model_name = 'model'
yaml_name = 'project'
model_path = os.path.join(st.session_state['defaults'].general.LDSR_dir, 'experiments/pretrained_models', model_name + '.ckpt')
yaml_path = os.path.join(st.session_state['defaults'].general.LDSR_dir, 'experiments/pretrained_models', yaml_name + '.yaml')
if not os.path.isfile(model_path):
raise Exception("LDSR model not found at path "+model_path)
if not os.path.isfile(yaml_path):
raise Exception("LDSR model not found at path "+yaml_path)
if checking == True:
return True
sys.path.append(os.path.abspath(st.session_state['defaults'].general.LDSR_dir))
from LDSR import LDSR
LDSRObject = LDSR(model_path, yaml_path)
return LDSRObject
#
LDSR = None
def try_loading_LDSR(model_name: str,checking=False):
global LDSR
if os.path.exists(st.session_state['defaults'].general.LDSR_dir):
try:
LDSR = load_LDSR(checking=True) # TODO: Should try to load both models before giving up
if checking == True:
print("Found LDSR")
return True
print("Latent Diffusion Super Sampling (LDSR) model loaded")
except Exception:
import traceback
print("Error loading LDSR:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
else:
print("LDSR not found at path, please make sure you have cloned the LDSR repo to ./src/latent-diffusion/")
#try_loading_LDSR('model',checking=True)
def load_SD_model():
if st.session_state['defaults'].general.optimized:
sd = load_sd_from_config(st.session_state['defaults'].general.default_model_path)
li, lo = [], []
for key, v_ in sd.items():
sp = key.split('.')
if(sp[0]) == 'model':
if('input_blocks' in sp):
li.append(key)
elif('middle_block' in sp):
li.append(key)
elif('time_embed' in sp):
li.append(key)
else:
lo.append(key)
for key in li:
sd['model1.' + key[6:]] = sd.pop(key)
for key in lo:
sd['model2.' + key[6:]] = sd.pop(key)
config = OmegaConf.load("optimizedSD/v1-inference.yaml")
device = torch.device(f"cuda:{opt.gpu}") if torch.cuda.is_available() else torch.device("cpu")
model = instantiate_from_config(config.modelUNet)
_, _ = model.load_state_dict(sd, strict=False)
model.cuda()
model.eval()
model.turbo = st.session_state['defaults'].general.optimized_turbo
modelCS = instantiate_from_config(config.modelCondStage)
_, _ = modelCS.load_state_dict(sd, strict=False)
modelCS.cond_stage_model.device = device
modelCS.eval()
modelFS = instantiate_from_config(config.modelFirstStage)
_, _ = modelFS.load_state_dict(sd, strict=False)
modelFS.eval()
del sd
if not st.session_state['defaults'].general.no_half:
model = model.half()
modelCS = modelCS.half()
modelFS = modelFS.half()
return model,modelCS,modelFS,device, config
else:
config = OmegaConf.load(st.session_state['defaults'].general.default_model_config)
model = load_model_from_config(config, st.session_state['defaults'].general.default_model_path)
device = torch.device(f"cuda:{opt.gpu}") if torch.cuda.is_available() else torch.device("cpu")
model = (model if st.session_state['defaults'].general.no_half else model.half()).to(device)
return model, device,config
#
#
def ModelLoader(models,load=False,unload=False,imgproc_realesrgan_model_name='RealESRGAN_x4plus'):
#get global variables
global_vars = globals()
#check if m is in globals
if unload:
for m in models:
if m in global_vars:
#if it is, delete it
del global_vars[m]
if st.session_state['defaults'].general.optimized:
if m == 'model':
del global_vars[m+'FS']
del global_vars[m+'CS']
if m =='model':
m='Stable Diffusion'
print('Unloaded ' + m)
if load:
for m in models:
if m not in global_vars or m in global_vars and type(global_vars[m]) == bool:
#if it isn't, load it
if m == 'GFPGAN':
global_vars[m] = load_GFPGAN()
elif m == 'model':
sdLoader = load_sd_from_config()
global_vars[m] = sdLoader[0]
if st.session_state['defaults'].general.optimized:
global_vars[m+'CS'] = sdLoader[1]
global_vars[m+'FS'] = sdLoader[2]
elif m == 'RealESRGAN':
global_vars[m] = load_RealESRGAN(imgproc_realesrgan_model_name)
elif m == 'LDSR':
global_vars[m] = load_LDSR()
if m =='model':
m='Stable Diffusion'
print('Loaded ' + m)
torch_gc()
#
@retry(tries=5)
def generation_callback(img, i=0):
try:
if i == 0:
if img['i']: i = img['i']
except TypeError:
pass
if i % int(st.session_state['defaults'].general.update_preview_frequency) == 0 and st.session_state['defaults'].general.update_preview:
#print (img)
#print (type(img))
# The following lines will convert the tensor we got on img to an actual image we can render on the UI.
# It can probably be done in a better way for someone who knows what they're doing. I don't.
#print (img,isinstance(img, torch.Tensor))
if isinstance(img, torch.Tensor):
x_samples_ddim = (st.session_state["model"] if not st.session_state['defaults'].general.optimized else modelFS).decode_first_stage(img)
else:
# When using the k Diffusion samplers they return a dict instead of a tensor that look like this:
# {'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}
x_samples_ddim = (st.session_state["model"] if not st.session_state['defaults'].general.optimized else modelFS).decode_first_stage(img["denoised"])
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
pil_image = transforms.ToPILImage()(x_samples_ddim.squeeze_(0))
# update image on the UI so we can see the progress
st.session_state["preview_image"].image(pil_image)
# Show a progress bar so we can keep track of the progress even when the image progress is not been shown,
# Dont worry, it doesnt affect the performance.
if st.session_state["generation_mode"] == "txt2img":
percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps))
st.session_state["progress_bar_text"].text(
f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps} {percent if percent < 100 else 100}%")
else:
if st.session_state["generation_mode"] == "img2img":
round_sampling_steps = round(st.session_state.sampling_steps * st.session_state["denoising_strength"])
percent = int(100 * float(i+1 if i+1 < round_sampling_steps else round_sampling_steps)/float(round_sampling_steps))
st.session_state["progress_bar_text"].text(
f"""Running step: {i+1 if i+1 < round_sampling_steps else round_sampling_steps}/{round_sampling_steps} {percent if percent < 100 else 100}%""")
else:
if st.session_state["generation_mode"] == "txt2vid":
percent = int(100 * float(i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps)/float(st.session_state.sampling_steps))
st.session_state["progress_bar_text"].text(
f"Running step: {i+1 if i+1 < st.session_state.sampling_steps else st.session_state.sampling_steps}/{st.session_state.sampling_steps}"
f"{percent if percent < 100 else 100}%")
st.session_state["progress_bar"].progress(percent if percent < 100 else 100)
prompt_parser = re.compile("""
(?P<prompt> # capture group for 'prompt'
[^:]+ # match one or more non ':' characters
) # end 'prompt'
(?: # non-capture group
:+ # match one or more ':' characters
(?P<weight> # capture group for 'weight'
-?\\d+(?:\\.\\d+)? # match positive or negative decimal number
)? # end weight capture group, make optional
\\s* # strip spaces after weight
| # OR
$ # else, if no ':' then match end of line
) # end non-capture group
""", re.VERBOSE)
# grabs all text up to the first occurrence of ':' as sub-prompt
# takes the value following ':' as weight
# if ':' has no value defined, defaults to 1.0
# repeats until no text remaining
def split_weighted_subprompts(input_string, normalize=True):
parsed_prompts = [(match.group("prompt"), float(match.group("weight") or 1)) for match in re.finditer(prompt_parser, input_string)]
if not normalize:
return parsed_prompts
# this probably still doesn't handle negative weights very well
weight_sum = sum(map(lambda x: x[1], parsed_prompts))
return [(x[0], x[1] / weight_sum) for x in parsed_prompts]
def slerp(device, t, v0:torch.Tensor, v1:torch.Tensor, DOT_THRESHOLD=0.9995):
v0 = v0.detach().cpu().numpy()
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
v2 = torch.from_numpy(v2).to(device)
return v2
#
def optimize_update_preview_frequency(current_chunk_speed, previous_chunk_speed, update_preview_frequency):
"""Find the optimal update_preview_frequency value maximizing
performance while minimizing the time between updates."""
if current_chunk_speed >= previous_chunk_speed:
#print(f"{current_chunk_speed} >= {previous_chunk_speed}")
update_preview_frequency +=1
previous_chunk_speed = current_chunk_speed
else:
#print(f"{current_chunk_speed} <= {previous_chunk_speed}")
update_preview_frequency -=1
previous_chunk_speed = current_chunk_speed
return current_chunk_speed, previous_chunk_speed, update_preview_frequency
def get_font(fontsize):
fonts = ["arial.ttf", "DejaVuSans.ttf"]
for font_name in fonts:
try:
return ImageFont.truetype(font_name, fontsize)
except OSError:
pass
# ImageFont.load_default() is practically unusable as it only supports
# latin1, so raise an exception instead if no usable font was found
raise Exception(f"No usable font found (tried {', '.join(fonts)})")
def load_embeddings(fp):
if fp is not None and hasattr(st.session_state["model"], "embedding_manager"):
st.session_state["model"].embedding_manager.load(fp['name'])
def image_grid(imgs, batch_size, force_n_rows=None, captions=None):
#print (len(imgs))
if force_n_rows is not None:
rows = force_n_rows
elif st.session_state['defaults'].general.n_rows > 0:
rows = st.session_state['defaults'].general.n_rows
elif st.session_state['defaults'].general.n_rows == 0:
rows = batch_size
else:
rows = math.sqrt(len(imgs))
rows = round(rows)
cols = math.ceil(len(imgs) / rows)
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols * w, rows * h), color='black')
fnt = get_font(30)
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
if captions and i<len(captions):
d = ImageDraw.Draw( grid )
size = d.textbbox( (0,0), captions[i], font=fnt, stroke_width=2, align="center" )
d.multiline_text((i % cols * w + w/2, i // cols * h + h - size[3]), captions[i], font=fnt, fill=(255,255,255), stroke_width=2, stroke_fill=(0,0,0), anchor="mm", align="center")
return grid
def seed_to_int(s):
if type(s) is int:
return s
if s is None or s == '':
return random.randint(0, 2**32 - 1)
if type(s) is list:
seed_list = []
for seed in s:
if seed is None or seed == '':
seed_list.append(random.randint(0, 2**32 - 1))
else:
seed_list = s
return seed_list
n = abs(int(s) if s.isdigit() else random.Random(s).randint(0, 2**32 - 1))
while n >= 2**32:
n = n >> 32
return n
#
def draw_prompt_matrix(im, width, height, all_prompts):
def wrap(text, d, font, line_length):
lines = ['']
for word in text.split():
line = f'{lines[-1]} {word}'.strip()
if d.textlength(line, font=font) <= line_length:
lines[-1] = line
else:
lines.append(word)
return '\n'.join(lines)
def draw_texts(pos, x, y, texts, sizes):
for i, (text, size) in enumerate(zip(texts, sizes)):
active = pos & (1 << i) != 0
if not active:
text = '\u0336'.join(text) + '\u0336'
d.multiline_text((x, y + size[1] / 2), text, font=fnt, fill=color_active if active else color_inactive, anchor="mm", align="center")
y += size[1] + line_spacing
fontsize = (width + height) // 25
line_spacing = fontsize // 2
fnt = get_font(fontsize)
color_active = (0, 0, 0)
color_inactive = (153, 153, 153)
pad_top = height // 4
pad_left = width * 3 // 4 if len(all_prompts) > 2 else 0
cols = im.width // width
rows = im.height // height
prompts = all_prompts[1:]
result = Image.new("RGB", (im.width + pad_left, im.height + pad_top), "white")
result.paste(im, (pad_left, pad_top))
d = ImageDraw.Draw(result)
boundary = math.ceil(len(prompts) / 2)
prompts_horiz = [wrap(x, d, fnt, width) for x in prompts[:boundary]]
prompts_vert = [wrap(x, d, fnt, pad_left) for x in prompts[boundary:]]
sizes_hor = [(x[2] - x[0], x[3] - x[1]) for x in [d.multiline_textbbox((0, 0), x, font=fnt) for x in prompts_horiz]]
sizes_ver = [(x[2] - x[0], x[3] - x[1]) for x in [d.multiline_textbbox((0, 0), x, font=fnt) for x in prompts_vert]]
hor_text_height = sum([x[1] + line_spacing for x in sizes_hor]) - line_spacing
ver_text_height = sum([x[1] + line_spacing for x in sizes_ver]) - line_spacing
for col in range(cols):
x = pad_left + width * col + width / 2
y = pad_top / 2 - hor_text_height / 2
draw_texts(col, x, y, prompts_horiz, sizes_hor)
for row in range(rows):
x = pad_left / 2
y = pad_top + height * row + height / 2 - ver_text_height / 2
draw_texts(row, x, y, prompts_vert, sizes_ver)
return result
def check_prompt_length(prompt, comments):
"""this function tests if prompt is too long, and if so, adds a message to comments"""
tokenizer = (st.session_state["model"] if not st.session_state['defaults'].general.optimized else modelCS).cond_stage_model.tokenizer
max_length = (st.session_state["model"] if not st.session_state['defaults'].general.optimized else modelCS).cond_stage_model.max_length
info = (st.session_state["model"] if not st.session_state['defaults'].general.optimized else modelCS).cond_stage_model.tokenizer([prompt], truncation=True, max_length=max_length,
return_overflowing_tokens=True, padding="max_length", return_tensors="pt")
ovf = info['overflowing_tokens'][0]
overflowing_count = ovf.shape[0]
if overflowing_count == 0:
return
vocab = {v: k for k, v in tokenizer.get_vocab().items()}
overflowing_words = [vocab.get(int(x), "") for x in ovf]
overflowing_text = tokenizer.convert_tokens_to_string(''.join(overflowing_words))
comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
def save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback,
save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images):
filename_i = os.path.join(sample_path_i, filename)
if st.session_state['defaults'].general.save_metadata or write_info_files:
# toggles differ for txt2img vs. img2img:
offset = 0 if init_img is None else 2
toggles = []
if prompt_matrix:
toggles.append(0)
if normalize_prompt_weights:
toggles.append(1)
if init_img is not None:
if uses_loopback:
toggles.append(2)
if uses_random_seed_loopback:
toggles.append(3)
if save_individual_images:
toggles.append(2 + offset)
if save_grid:
toggles.append(3 + offset)
if sort_samples:
toggles.append(4 + offset)
if write_info_files:
toggles.append(5 + offset)
if use_GFPGAN:
toggles.append(6 + offset)
metadata = \
dict(
target="txt2img" if init_img is None else "img2img",
prompt=prompts[i], ddim_steps=steps, toggles=toggles, sampler_name=sampler_name,
ddim_eta=ddim_eta, n_iter=n_iter, batch_size=batch_size, cfg_scale=cfg_scale,
seed=seeds[i], width=width, height=height, normalize_prompt_weights=normalize_prompt_weights)
# Not yet any use for these, but they bloat up the files:
# info_dict["init_img"] = init_img
# info_dict["init_mask"] = init_mask
if init_img is not None:
metadata["denoising_strength"] = str(denoising_strength)
metadata["resize_mode"] = resize_mode
if write_info_files:
with open(f"{filename_i}.yaml", "w", encoding="utf8") as f:
yaml.dump(metadata, f, allow_unicode=True, width=10000)
if st.session_state['defaults'].general.save_metadata:
# metadata = {
# "SD:prompt": prompts[i],
# "SD:seed": str(seeds[i]),
# "SD:width": str(width),
# "SD:height": str(height),
# "SD:steps": str(steps),
# "SD:cfg_scale": str(cfg_scale),
# "SD:normalize_prompt_weights": str(normalize_prompt_weights),
# }
metadata = {"SD:" + k:v for (k,v) in metadata.items()}
if save_ext == "png":
mdata = PngInfo()
for key in metadata:
mdata.add_text(key, str(metadata[key]))
image.save(f"{filename_i}.png", pnginfo=mdata)
else:
if jpg_sample:
image.save(f"{filename_i}.jpg", quality=save_quality,
optimize=True)
elif save_ext == "webp":
image.save(f"{filename_i}.{save_ext}", f"webp", quality=save_quality,
lossless=save_lossless)
else:
# not sure what file format this is
image.save(f"{filename_i}.{save_ext}", f"{save_ext}")
try:
exif_dict = piexif.load(f"{filename_i}.{save_ext}")
except:
exif_dict = { "Exif": dict() }
exif_dict["Exif"][piexif.ExifIFD.UserComment] = piexif.helper.UserComment.dump(
json.dumps(metadata), encoding="unicode")
piexif.insert(piexif.dump(exif_dict), f"{filename_i}.{save_ext}")
# render the image on the frontend
st.session_state["preview_image"].image(image)
def get_next_sequence_number(path, prefix=''):
"""
Determines and returns the next sequence number to use when saving an
image in the specified directory.
If a prefix is given, only consider files whose names start with that
prefix, and strip the prefix from filenames before extracting their
sequence number.
The sequence starts at 0.
"""
result = -1
for p in Path(path).iterdir():
if p.name.endswith(('.png', '.jpg')) and p.name.startswith(prefix):
tmp = p.name[len(prefix):]
try:
result = max(int(tmp.split('-')[0]), result)
except ValueError:
pass
return result + 1
def oxlamon_matrix(prompt, seed, n_iter, batch_size):
pattern = re.compile(r'(,\s){2,}')
class PromptItem:
def __init__(self, text, parts, item):
self.text = text
self.parts = parts
if item:
self.parts.append( item )
def clean(txt):
return re.sub(pattern, ', ', txt)
def getrowcount( txt ):
for data in re.finditer( ".*?\\((.*?)\\).*", txt ):
if data:
return len(data.group(1).split("|"))
break
return None
def repliter( txt ):
for data in re.finditer( ".*?\\((.*?)\\).*", txt ):
if data:
r = data.span(1)
for item in data.group(1).split("|"):
yield (clean(txt[:r[0]-1] + item.strip() + txt[r[1]+1:]), item.strip())
break
def iterlist( items ):
outitems = []
for item in items:
for newitem, newpart in repliter(item.text):
outitems.append( PromptItem(newitem, item.parts.copy(), newpart) )
return outitems
def getmatrix( prompt ):
dataitems = [ PromptItem( prompt[1:].strip(), [], None ) ]
while True:
newdataitems = iterlist( dataitems )
if len( newdataitems ) == 0:
return dataitems
dataitems = newdataitems
def classToArrays( items, seed, n_iter ):
texts = []
parts = []
seeds = []
for item in items:
itemseed = seed
for i in range(n_iter):
texts.append( item.text )
parts.append( f"Seed: {itemseed}\n" + "\n".join(item.parts) )
seeds.append( itemseed )
itemseed += 1
return seeds, texts, parts
all_seeds, all_prompts, prompt_matrix_parts = classToArrays(getmatrix( prompt ), seed, n_iter)
n_iter = math.ceil(len(all_prompts) / batch_size)
needrows = getrowcount(prompt)
if needrows:
xrows = math.sqrt(len(all_prompts))
xrows = round(xrows)
# if columns is to much
cols = math.ceil(len(all_prompts) / xrows)
if cols > needrows*4:
needrows *= 2
return all_seeds, n_iter, prompt_matrix_parts, all_prompts, needrows
#
def process_images(
outpath, func_init, func_sample, prompt, seed, sampler_name, save_grid, batch_size,
n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN, use_RealESRGAN, realesrgan_model_name,
fp=None, ddim_eta=0.0, normalize_prompt_weights=True, init_img=None, init_mask=None,
mask_blur_strength=3, mask_restore=False, denoising_strength=0.75, noise_mode=0, find_noise_steps=1, resize_mode=None, uses_loopback=False,
uses_random_seed_loopback=False, sort_samples=True, write_info_files=True, jpg_sample=False,
variant_amount=0.0, variant_seed=None, save_individual_images: bool = True):
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
assert prompt is not None
torch_gc()
# start time after garbage collection (or before?)
start_time = time.time()
# We will use this date here later for the folder name, need to start_time if not need
run_start_dt = datetime.datetime.now()
mem_mon = MemUsageMonitor('MemMon')
mem_mon.start()
if hasattr(st.session_state["model"], "embedding_manager"):
load_embeddings(fp)
os.makedirs(outpath, exist_ok=True)
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
if not ("|" in prompt) and prompt.startswith("@"):
prompt = prompt[1:]
comments = []
prompt_matrix_parts = []
simple_templating = False
add_original_image = not (use_RealESRGAN or use_GFPGAN)
if prompt_matrix:
if prompt.startswith("@"):
simple_templating = True
add_original_image = not (use_RealESRGAN or use_GFPGAN)
all_seeds, n_iter, prompt_matrix_parts, all_prompts, frows = oxlamon_matrix(prompt, seed, n_iter, batch_size)
else:
all_prompts = []
prompt_matrix_parts = prompt.split("|")
combination_count = 2 ** (len(prompt_matrix_parts) - 1)
for combination_num in range(combination_count):
current = prompt_matrix_parts[0]
for n, text in enumerate(prompt_matrix_parts[1:]):
if combination_num & (2 ** n) > 0:
current += ("" if text.strip().startswith(",") else ", ") + text
all_prompts.append(current)
n_iter = math.ceil(len(all_prompts) / batch_size)
all_seeds = len(all_prompts) * [seed]
print(f"Prompt matrix will create {len(all_prompts)} images using a total of {n_iter} batches.")
else:
if not st.session_state['defaults'].general.no_verify_input:
try:
check_prompt_length(prompt, comments)
except:
import traceback
print("Error verifying input:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
all_prompts = batch_size * n_iter * [prompt]
all_seeds = [seed + x for x in range(len(all_prompts))]
precision_scope = autocast if st.session_state['defaults'].general.precision == "autocast" else nullcontext
output_images = []
grid_captions = []
stats = []
with torch.no_grad(), precision_scope("cuda"), (st.session_state["model"].ema_scope() if not st.session_state['defaults'].general.optimized else nullcontext()):
init_data = func_init()
tic = time.time()
# if variant_amount > 0.0 create noise from base seed
base_x = None
if variant_amount > 0.0:
target_seed_randomizer = seed_to_int('') # random seed
torch.manual_seed(seed) # this has to be the single starting seed (not per-iteration)
base_x = create_random_tensors([opt_C, height // opt_f, width // opt_f], seeds=[seed])
# we don't want all_seeds to be sequential from starting seed with variants,
# since that makes the same variants each time,
# so we add target_seed_randomizer as a random offset
for si in range(len(all_seeds)):
all_seeds[si] += target_seed_randomizer
for n in range(n_iter):
print(f"Iteration: {n+1}/{n_iter}")
prompts = all_prompts[n * batch_size:(n + 1) * batch_size]
captions = prompt_matrix_parts[n * batch_size:(n + 1) * batch_size]
seeds = all_seeds[n * batch_size:(n + 1) * batch_size]
print(prompt)
if st.session_state['defaults'].general.optimized:
modelCS.to(st.session_state['defaults'].general.gpu)
uc = (st.session_state["model"] if not st.session_state['defaults'].general.optimized else modelCS).get_learned_conditioning(len(prompts) * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
# split the prompt if it has : for weighting
# TODO for speed it might help to have this occur when all_prompts filled??
weighted_subprompts = split_weighted_subprompts(prompts[0], normalize_prompt_weights)
# sub-prompt weighting used if more than 1
if len(weighted_subprompts) > 1:
c = torch.zeros_like(uc) # i dont know if this is correct.. but it works
for i in range(0, len(weighted_subprompts)):
# note if alpha negative, it functions same as torch.sub
c = torch.add(c, (st.session_state["model"] if not st.session_state['defaults'].general.optimized else modelCS).get_learned_conditioning(weighted_subprompts[i][0]), alpha=weighted_subprompts[i][1])
else: # just behave like usual
c = (st.session_state["model"] if not st.session_state['defaults'].general.optimized else modelCS).get_learned_conditioning(prompts)
shape = [opt_C, height // opt_f, width // opt_f]
if st.session_state['defaults'].general.optimized:
mem = torch.cuda.memory_allocated()/1e6
modelCS.to("cpu")
while(torch.cuda.memory_allocated()/1e6 >= mem):
time.sleep(1)
if noise_mode == 1 or noise_mode == 3:
# TODO params for find_noise_to_image
x = torch.cat(batch_size * [find_noise_for_image.find_noise_for_image(
st.session_state["model"], st.session_state["device"],
init_img.convert('RGB'), '', find_noise_steps, 0.0, normalize=True,
generation_callback=generation_callback,
)], dim=0)
else:
# we manually generate all input noises because each one should have a specific seed
x = create_random_tensors(shape, seeds=seeds)
if variant_amount > 0.0: # we are making variants
# using variant_seed as sneaky toggle,
# when not None or '' use the variant_seed
# otherwise use seeds
if variant_seed != None and variant_seed != '':
specified_variant_seed = seed_to_int(variant_seed)
torch.manual_seed(specified_variant_seed)
seeds = [specified_variant_seed]
# finally, slerp base_x noise to target_x noise for creating a variant
x = slerp(st.session_state['defaults'].general.gpu, max(0.0, min(1.0, variant_amount)), base_x, x)
samples_ddim = func_sample(init_data=init_data, x=x, conditioning=c, unconditional_conditioning=uc, sampler_name=sampler_name)
if st.session_state['defaults'].general.optimized:
modelFS.to(st.session_state['defaults'].general.gpu)
x_samples_ddim = (st.session_state["model"] if not st.session_state['defaults'].general.optimized else modelFS).decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
for i, x_sample in enumerate(x_samples_ddim):
sanitized_prompt = slugify(prompts[i])
if sort_samples:
full_path = os.path.join(os.getcwd(), sample_path, sanitized_prompt)
sanitized_prompt = sanitized_prompt[:220-len(full_path)]
sample_path_i = os.path.join(sample_path, sanitized_prompt)
#print(f"output folder length: {len(os.path.join(os.getcwd(), sample_path_i))}")
#print(os.path.join(os.getcwd(), sample_path_i))
os.makedirs(sample_path_i, exist_ok=True)
base_count = get_next_sequence_number(sample_path_i)
filename = f"{base_count:05}-{steps}_{sampler_name}_{seeds[i]}"
else:
full_path = os.path.join(os.getcwd(), sample_path)
sample_path_i = sample_path
base_count = get_next_sequence_number(sample_path_i)
filename = f"{base_count:05}-{steps}_{sampler_name}_{seeds[i]}_{sanitized_prompt}"[:220-len(full_path)] #same as before
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
x_sample = x_sample.astype(np.uint8)
image = Image.fromarray(x_sample)
original_sample = x_sample
original_filename = filename
if use_GFPGAN and st.session_state["GFPGAN"] is not None and not use_RealESRGAN:
#skip_save = True # #287 >_>
torch_gc()
cropped_faces, restored_faces, restored_img = st.session_state["GFPGAN"].enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
gfpgan_sample = restored_img[:,:,::-1]
gfpgan_image = Image.fromarray(gfpgan_sample)
gfpgan_filename = original_filename + '-gfpgan'
save_sample(gfpgan_image, sample_path_i, gfpgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback,
uses_random_seed_loopback, save_grid, sort_samples, sampler_name, ddim_eta,
n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images=False)
output_images.append(gfpgan_image) #287
if simple_templating:
grid_captions.append( captions[i] + "\ngfpgan" )
if use_RealESRGAN and st.session_state["RealESRGAN"] is not None and not use_GFPGAN:
#skip_save = True # #287 >_>
torch_gc()
if st.session_state["RealESRGAN"].model.name != realesrgan_model_name:
#try_loading_RealESRGAN(realesrgan_model_name)
load_models(use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, RealESRGAN_model=realesrgan_model_name)
output, img_mode = st.session_state["RealESRGAN"].enhance(x_sample[:,:,::-1])
esrgan_filename = original_filename + '-esrgan4x'
esrgan_sample = output[:,:,::-1]
esrgan_image = Image.fromarray(esrgan_sample)
#save_sample(image, sample_path_i, original_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
#normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback, skip_save,
#save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode)
save_sample(esrgan_image, sample_path_i, esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback,
save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images=False)
output_images.append(esrgan_image) #287
if simple_templating:
grid_captions.append( captions[i] + "\nesrgan" )
if use_RealESRGAN and st.session_state["RealESRGAN"] is not None and use_GFPGAN and st.session_state["GFPGAN"] is not None:
#skip_save = True # #287 >_>
torch_gc()
cropped_faces, restored_faces, restored_img = st.session_state["GFPGAN"].enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
gfpgan_sample = restored_img[:,:,::-1]
if st.session_state["RealESRGAN"].model.name != realesrgan_model_name:
#try_loading_RealESRGAN(realesrgan_model_name)
load_models(use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, RealESRGAN_model=realesrgan_model_name)
output, img_mode = st.session_state["RealESRGAN"].enhance(gfpgan_sample[:,:,::-1])
gfpgan_esrgan_filename = original_filename + '-gfpgan-esrgan4x'
gfpgan_esrgan_sample = output[:,:,::-1]
gfpgan_esrgan_image = Image.fromarray(gfpgan_esrgan_sample)
save_sample(gfpgan_esrgan_image, sample_path_i, gfpgan_esrgan_filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
normalize_prompt_weights, False, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback,
save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images=False)
output_images.append(gfpgan_esrgan_image) #287
if simple_templating:
grid_captions.append( captions[i] + "\ngfpgan_esrgan" )
if mask_restore and init_mask:
#init_mask = init_mask if keep_mask else ImageOps.invert(init_mask)
init_mask = init_mask.filter(ImageFilter.GaussianBlur(mask_blur_strength))
init_mask = init_mask.convert('L')
init_img = init_img.convert('RGB')
image = image.convert('RGB')
if use_RealESRGAN and st.session_state["RealESRGAN"] is not None:
if st.session_state["RealESRGAN"].model.name != realesrgan_model_name:
#try_loading_RealESRGAN(realesrgan_model_name)
load_models(use_GFPGAN=use_GFPGAN, use_RealESRGAN=use_RealESRGAN, RealESRGAN_model=realesrgan_model_name)
output, img_mode = st.session_state["RealESRGAN"].enhance(np.array(init_img, dtype=np.uint8))
init_img = Image.fromarray(output)
init_img = init_img.convert('RGB')
output, img_mode = st.session_state["RealESRGAN"].enhance(np.array(init_mask, dtype=np.uint8))
init_mask = Image.fromarray(output)
init_mask = init_mask.convert('L')
image = Image.composite(init_img, image, init_mask)
if save_individual_images:
save_sample(image, sample_path_i, filename, jpg_sample, prompts, seeds, width, height, steps, cfg_scale,
normalize_prompt_weights, use_GFPGAN, write_info_files, prompt_matrix, init_img, uses_loopback, uses_random_seed_loopback,
save_grid, sort_samples, sampler_name, ddim_eta, n_iter, batch_size, i, denoising_strength, resize_mode, save_individual_images)
if not use_GFPGAN or not use_RealESRGAN:
output_images.append(image)
#if add_original_image or not simple_templating:
#output_images.append(image)
#if simple_templating:
#grid_captions.append( captions[i] )
if st.session_state['defaults'].general.optimized:
mem = torch.cuda.memory_allocated()/1e6
modelFS.to("cpu")
while(torch.cuda.memory_allocated()/1e6 >= mem):
time.sleep(1)
if prompt_matrix or save_grid:
if prompt_matrix:
if simple_templating:
grid = image_grid(output_images, n_iter, force_n_rows=frows, captions=grid_captions)
else:
grid = image_grid(output_images, n_iter, force_n_rows=1 << ((len(prompt_matrix_parts)-1)//2))
try:
grid = draw_prompt_matrix(grid, width, height, prompt_matrix_parts)
except:
import traceback
print("Error creating prompt_matrix text:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
else:
grid = image_grid(output_images, batch_size)
if grid and (batch_size > 1 or n_iter > 1):
output_images.insert(0, grid)
grid_count = get_next_sequence_number(outpath, 'grid-')
grid_file = f"grid-{grid_count:05}-{seed}_{slugify(prompts[i].replace(' ', '_')[:220-len(full_path)])}.{grid_ext}"
grid.save(os.path.join(outpath, grid_file), grid_format, quality=grid_quality, lossless=grid_lossless, optimize=True)
toc = time.time()
mem_max_used, mem_total = mem_mon.read_and_stop()
time_diff = time.time()-start_time
info = f"""
{prompt}
Steps: {steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', Denoising strength: '+str(denoising_strength) if init_img is not None else ''}{', GFPGAN' if use_GFPGAN and st.session_state["GFPGAN"] is not None else ''}{', '+realesrgan_model_name if use_RealESRGAN and st.session_state["RealESRGAN"] is not None else ''}{', Prompt Matrix Mode.' if prompt_matrix else ''}""".strip()
stats = f'''
Took { round(time_diff, 2) }s total ({ round(time_diff/(len(all_prompts)),2) }s per image)
Peak memory usage: { -(mem_max_used // -1_048_576) } MiB / { -(mem_total // -1_048_576) } MiB / { round(mem_max_used/mem_total*100, 3) }%'''
for comment in comments:
info += "\n\n" + comment
#mem_mon.stop()
#del mem_mon
torch_gc()
return output_images, seed, info, stats
def resize_image(resize_mode, im, width, height):
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
if resize_mode == 0:
res = im.resize((width, height), resample=LANCZOS)
elif resize_mode == 1:
ratio = width / height
src_ratio = im.width / im.height
src_w = width if ratio > src_ratio else im.width * height // im.height
src_h = height if ratio <= src_ratio else im.height * width // im.width
resized = im.resize((src_w, src_h), resample=LANCZOS)
res = Image.new("RGBA", (width, height))
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
else:
ratio = width / height
src_ratio = im.width / im.height
src_w = width if ratio < src_ratio else im.width * height // im.height
src_h = height if ratio >= src_ratio else im.height * width // im.width
resized = im.resize((src_w, src_h), resample=LANCZOS)
res = Image.new("RGBA", (width, height))
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
if ratio < src_ratio:
fill_height = height // 2 - src_h // 2
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h))
elif ratio > src_ratio:
fill_width = width // 2 - src_w // 2
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0))
return res
#