Ghost/ghost/job-manager
2020-12-11 12:43:04 +00:00
..
lib Added jsdoc to bree job builder 2020-12-09 19:34:04 +13:00
test Added support for immediate offloaded jobs 2020-12-09 19:11:17 +13:00
.eslintrc.js Added new job manager package 2020-08-11 21:17:52 +01:00
index.js Added new job manager package 2020-08-11 21:17:52 +01:00
LICENSE Added new job manager package 2020-08-11 21:17:52 +01:00
package.json Update dependency sinon to v9.2.2 2020-12-11 12:43:04 +00:00
README.md Updated docs around inline/offloaded jobs 2020-12-09 20:04:09 +13:00

Job Manager

A manager for jobs (aka tasks) that have to be performed asynchronously, optionally recurring, scheduled or one-off in their nature. The job queue is manage in memory without additional dependencies.

Install

npm install @tryghost/job-manager --save

or

yarn add @tryghost/job-manager

Usage

Below is a sample code to wire up job manger and initialize jobs:

const JobManager = require('@tryghost/job-manager');

const logging = {
    info: console.log,
    warn: console.log,
    error: console.error
};

const jobManager = new JobManager(logging);

// register a job "function" with queued execution in parent event loop
jobManager.addJob(printWord(word) => console.log(word), 'hello');

// register a job "module" with queued execution in parent even loop
jobManager.addJob('./path/to/email-module.js', {email: 'send@here.com'});

// register recurring job which needs execution outside parent event loop
jobManager.scheduleJob('every 5 minutes', './path/to/jobs/check-emails.js', {}, 'email-checker');

// register recurring job with cron syntax running every 5 minutes
// job needs execution outside parent event loop
// for cron builder check https://crontab.guru/ (first value is seconds)
jobManager.scheduleJob('0 1/5 * * * *', './path/to/jobs/check-emails.js', {}, 'email-checker-cron');

// register a job to un immediately
jobManager.scheduleJob(undefined, './path/to/jobs/check-emails.js', {}, 'email-checker-now');

For other examples of JobManager initialization check test/examples directory.

Job types and definitions

Job manager's instance accepts a "job" as a parameter in it's addJob and scheduleJob methods. Both methods should be used based on the nature of jobs they are going to run.

There are two types of jobs distinguished based on purpose and environment they run in:

  • "inline" - job which is run in the same even loop as the caller. Should be used in situations when there is no even loop blocking operations and no need to manage memory leaks in sandboxed way. Sometimes
  • "offloaded" - job which is executed in separate to caller's event loop. For Node >v12 clients it spawns a Worker thread, for older Node runtimes it is executed in separate process through child_process. Comparing to inline jobs, offloaded jobs are safer to execute as they are run on a dedicated thread (or process) acting like a sandbox. These jobs also give better utilization of multi-core CPUs. This type of jobs is useful when there are heavy computations needed to be done blocking the event loop or need a sandboxed environment to run in safely. Example jobs would be: statistical information processing, memory intensive computations (e.g. recursive algorithms), processing that requires blocking I/O operations etc.

addJob method should be used to add an inline function for execution in FIFO queue. The job should not be computationally intensive and should have small amount of asynchronous operations. The developer should always account that the function will be executed on the same event loop, thread and process as caller's process.

scheduleJob method should be used to register execution of an offloaded job - script defined in a separate file. The job can be scheduled to run immediately, in the future, or in recurring manner.

Jobs

Jobs can be defined in multiple ways depending on the method they will be registered with.

Short inline, non-blocking, asap executed jobs - should come through addJob method. Such jobs should be JavaScript function or a path to a module that exports a function as default.

Offloaded job can be registered through scheduleJob method. Jobs created this way are managed by bree job scheduling library. For examples of job scripts check out this section of bree's documentation, test job examples.

Offloaded jobs rules of thumb

To prevent complications around failed job retries and and handling of specific job states here are some rules that should be followed for all scheduled jobs:

  1. Jobs are self contained - meaning job manager should be able to run the job with the state information included within the job's parameters. Job script should look up for the rest of needed information from somewhere else, like a database, API, or file.
  2. Jobs should be idempotent - consequent job executions should be safe.
  3. Job parameters should be kept to the minimum. When passing large amounts of data around performance can suffer from slow JSON serialization. Also, storage size restrictions that can arise if there is a need to store parameters in the future.Job parameters should be kept to only information that is needed to retrieve the rest of information from somewhere else. For example, it's recommended to pass in only an id of the resource that could be fetched from the data storage during job execution or pass in a file path which could be read during execution.
  4. Scheduled job execution time should not overlap. It's up to the registering service to assure job execution time does not ecceed time between subsequent scheduled jobs. For example, if job is scheduled to run every 5 minutes it should always run under 5 minutes, otherwise next scheduled job would fail to start.

Offloaded jobs lifecycle

Offloaded jobs are running on dedicated worker threads which makes their lifecycle a bit different to inline jobs:

  1. When starting a job it's only sharing ENV variables with it's parent process. The job itself is run on an independent JavaScript execution thread. The script has to re-initialize any modules it will use. For example it should take care of: model layer initialization, cache initialization, etc.
  2. When finishing work in a job prefer to signal successful termination by sending 'done' message to the parent thread: parentPort.postMessage('done') (example use). Finishing work this way terminates the thread through worker.terminate(), which logs termination in parent process and flushes any pipes opened in thread.
  3. Jobs that have iterative nature, or need cleanup before interrupting work should allow for graceful shutdown by listening on 'cancel' message coming from parent thread (example use).
  4. When exceptions happen and expected outcome is to terminate current job, leave the exception unhandled allowing it to bubble up to the job manager. Unhandled exceptions terminate current thread and allow for next scheduled job execution to happen.

For more nuances on job structure best practices check bree documentation.

Offloaded job script quirks

⚠️ to ensure worker thread back compatibility and correct inter-thread communication use btrheads polyfill instead of native worker_threads module in job scripts.

Instead of:

const {isMainThread, parentPort} = require('worker_threads');

use

const {isMainThread, parentPort} = require('bthreads');

It should be possible to use native worker_threads module once Node v10 hits EOL (2021-04-30).

Develop

This is a mono repository, managed with lerna.

Follow the instructions for the top-level repo.

  1. git clone this repo & cd into it as usual
  2. Run yarn to install top-level dependencies.

Run

  • yarn dev

Test

  • yarn lint run just eslint
  • yarn test run lint and tests

Copyright & License

Copyright (c) 2020 Ghost Foundation - Released under the MIT license.