MeshCentral/public/scripts/zlib-adler32.js

280 lines
10 KiB
JavaScript
Raw Normal View History

2018-01-19 02:43:43 +03:00
/* zlib-adler32.js -- JavaScript implementation for the zlib adler32.
Version: 0.2.0
LastModified: Apr 12 2012
Copyright (C) 2012 Masanao Izumo <iz@onicos.co.jp>
API documentation
==============================================================================
Usage: adler = ZLIB.adler32(adler, buf, offset, len);
Update a running Adler-32 checksum with the bytes buf[offset..offset+len-1] and
return the updated checksum. If buf is null, this function returns the
required initial value for the checksum.
An Adler-32 checksum is almost as reliable as a CRC32 but can be computed
much faster.
Usage example:
var adler = ZLIB.adler32(0, null, 0, 0);
while (read_buffer(buffer, length) != EOF) {
adler = ZLIB.adler32(adler, buffer, 0, length);
}
if (adler != original_adler) error();
==============================================================================
Usage: adler = ZLIB.adler32_combine(adler1, adler2, len2);
Combine two Adler-32 checksums into one. For two sequences of bytes, seq1
and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for
each, adler1 and adler2. adler32_combine() returns the Adler-32 checksum of
seq1 and seq2 concatenated, requiring only adler1, adler2, and len2. Note
that the z_off_t type (like off_t) is a signed integer. If len2 is
negative, the result has no meaning or utility.
*/
if( typeof ZLIB === 'undefined' ) {
alert('ZLIB is not defined. SRC zlib.js before zlib-adler32.js')
}
(function() {
/* adler32.c -- compute the Adler-32 checksum of a data stream
* Copyright (C) 1995-2011 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
var BASE = 65521; /* largest prime smaller than 65536 */
var NMAX = 5552;
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
/* ========================================================================= */
function adler32_string(adler, buf, offset, len)
{
var sum2;
var n;
/* split Adler-32 into component sums */
sum2 = (adler >>> 16) & 0xffff;
adler &= 0xffff;
/* in case user likes doing a byte at a time, keep it fast */
if (len == 1) {
adler += buf.charCodeAt(offset) & 0xff;
if (adler >= BASE)
adler -= BASE;
sum2 += adler;
if (sum2 >= BASE)
sum2 -= BASE;
return adler | (sum2 << 16);
}
/* initial Adler-32 value (deferred check for len == 1 speed) */
if (buf === null)
return 1;
/* in case short lengths are provided, keep it somewhat fast */
if (len < 16) {
while (len--) {
adler += buf.charCodeAt(offset++) & 0xff;
sum2 += adler;
}
if (adler >= BASE)
adler -= BASE;
sum2 %= BASE; /* only added so many BASE's */
return adler | (sum2 << 16);
}
/* do length NMAX blocks -- requires just one modulo operation */
while (len >= NMAX) {
len -= NMAX;
n = NMAX >> 4; /* NMAX is divisible by 16 */
do {
/* 16 sums unrolled */
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
} while (--n);
adler %= BASE;
sum2 %= BASE;
}
/* do remaining bytes (less than NMAX, still just one modulo) */
if (len) { /* avoid modulos if none remaining */
while (len >= 16) {
len -= 16;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
}
while (len--) {
adler += buf.charCodeAt(offset++) & 0xff; sum2 += adler;
}
adler %= BASE;
sum2 %= BASE;
}
/* return recombined sums */
return adler | (sum2 << 16);
}
/* ========================================================================= */
function adler32_array(adler, buf, offset, len)
{
var sum2;
var n;
/* split Adler-32 into component sums */
sum2 = (adler >>> 16) & 0xffff;
adler &= 0xffff;
/* in case user likes doing a byte at a time, keep it fast */
if (len == 1) {
adler += buf[offset];
if (adler >= BASE)
adler -= BASE;
sum2 += adler;
if (sum2 >= BASE)
sum2 -= BASE;
return adler | (sum2 << 16);
}
/* initial Adler-32 value (deferred check for len == 1 speed) */
if (buf === null)
return 1;
/* in case short lengths are provided, keep it somewhat fast */
if (len < 16) {
while (len--) {
adler += buf[offset++];
sum2 += adler;
}
if (adler >= BASE)
adler -= BASE;
sum2 %= BASE; /* only added so many BASE's */
return adler | (sum2 << 16);
}
/* do length NMAX blocks -- requires just one modulo operation */
while (len >= NMAX) {
len -= NMAX;
n = NMAX >> 4; /* NMAX is divisible by 16 */
do {
/* 16 sums unrolled */
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
} while (--n);
adler %= BASE;
sum2 %= BASE;
}
/* do remaining bytes (less than NMAX, still just one modulo) */
if (len) { /* avoid modulos if none remaining */
while (len >= 16) {
len -= 16;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
adler += buf[offset++]; sum2 += adler;
}
while (len--) {
adler += buf[offset++]; sum2 += adler;
}
adler %= BASE;
sum2 %= BASE;
}
/* return recombined sums */
return adler | (sum2 << 16);
}
/* ========================================================================= */
ZLIB.adler32 = function(adler, buf, offset, len)
{
if(typeof buf === 'string') {
return adler32_string(adler, buf, offset, len);
} else {
return adler32_array(adler, buf, offset, len);
}
};
ZLIB.adler32_combine = function(adler1, adler2, len2)
{
var sum1;
var sum2;
var rem;
/* for negative len, return invalid adler32 as a clue for debugging */
if (len2 < 0)
return 0xffffffff;
/* the derivation of this formula is left as an exercise for the reader */
len2 %= BASE; /* assumes len2 >= 0 */
rem = len2;
sum1 = adler1 & 0xffff;
sum2 = rem * sum1;
sum2 %= BASE;
sum1 += (adler2 & 0xffff) + BASE - 1;
sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
if (sum1 >= BASE) sum1 -= BASE;
if (sum1 >= BASE) sum1 -= BASE;
if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1);
if (sum2 >= BASE) sum2 -= BASE;
return sum1 | (sum2 << 16);
}
}());