1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
use std::collections::{BTreeSet, HashMap, VecDeque};

use serde::{Deserialize, Serialize};

use abstutil::FixedMap;
use geom::{Distance, Time};
use map_model::{Map, Traversable};

use crate::mechanics::car::{Car, CarState};
use crate::{CarID, VehicleType, FOLLOWING_DISTANCE};

/// A Queue of vehicles on a single lane or turn. No over-taking or lane-changing. This is where
/// https://dabreegster.github.io/abstreet/trafficsim/discrete_event.html#exact-positions is
/// implemented.
#[derive(Serialize, Deserialize, Clone)]
pub(crate) struct Queue {
    pub id: Traversable,
    pub cars: VecDeque<CarID>,
    /// This car's back is still partly in this queue.
    pub laggy_head: Option<CarID>,

    pub geom_len: Distance,
    /// When a car's turn is accepted, reserve the vehicle length + FOLLOWING_DISTANCE for the
    /// target lane. When the car completely leaves (stops being the laggy_head), free up that
    /// space. To prevent blocking the box for possibly scary amounts of time, allocate some of
    /// this length first. This is unused for turns themselves. This value can exceed geom_len
    /// (for the edge case of ONE long car on a short queue).
    pub reserved_length: Distance,
}

impl Queue {
    pub fn new(id: Traversable, map: &Map) -> Queue {
        Queue {
            id,
            cars: VecDeque::new(),
            laggy_head: None,
            geom_len: id.length(map),
            reserved_length: Distance::ZERO,
        }
    }

    pub fn get_last_car_position(
        &self,
        now: Time,
        cars: &FixedMap<CarID, Car>,
        queues: &HashMap<Traversable, Queue>,
    ) -> Option<(CarID, Distance)> {
        self.inner_get_last_car_position(now, cars, queues, &mut BTreeSet::new(), None)
    }

    /// Farthest along (greatest distance) is first.
    pub fn get_car_positions(
        &self,
        now: Time,
        cars: &FixedMap<CarID, Car>,
        queues: &HashMap<Traversable, Queue>,
    ) -> Vec<(CarID, Distance)> {
        let mut all_cars = vec![];
        self.inner_get_last_car_position(
            now,
            cars,
            queues,
            &mut BTreeSet::new(),
            Some(&mut all_cars),
        );
        all_cars
    }

    fn inner_get_last_car_position(
        &self,
        now: Time,
        cars: &FixedMap<CarID, Car>,
        queues: &HashMap<Traversable, Queue>,
        recursed_queues: &mut BTreeSet<Traversable>,
        mut intermediate_results: Option<&mut Vec<(CarID, Distance)>>,
    ) -> Option<(CarID, Distance)> {
        if self.cars.is_empty() {
            return None;
        }

        let mut previous: Option<(CarID, Distance)> = None;
        for id in &self.cars {
            let bound = match previous {
                Some((leader, last_dist)) => {
                    last_dist - cars[&leader].vehicle.length - FOLLOWING_DISTANCE
                }
                None => match self.laggy_head {
                    Some(id) => {
                        // The simple but broken version:
                        //self.geom_len - cars[&id].vehicle.length - FOLLOWING_DISTANCE

                        // The expensive case. We need to figure out exactly where the laggy head
                        // is on their queue.
                        let leader = &cars[&id];

                        // But don't create a cycle!
                        let recurse_to = leader.router.head();
                        if recursed_queues.contains(&recurse_to) {
                            // See the picture in
                            // https://github.com/dabreegster/abstreet/issues/30. We have two
                            // extremes to break the cycle.
                            //
                            // 1) Hope that the last person in this queue isn't bounded by the
                            //    agent in front of them yet. geom_len
                            // 2) Assume the leader has advanced minimally into the next lane.
                            //    geom_len - laggy head's length - FOLLOWING_DISTANCE.
                            //
                            // For now, optimistically assume 1. If we're wrong, consequences could
                            // be queue spillover (we're too optimistic about the number of
                            // vehicles that can fit on a lane) or cars jumping positions slightly
                            // while the cycle occurs.
                            self.geom_len
                        } else {
                            recursed_queues.insert(recurse_to);

                            let (head, head_dist) = queues[&leader.router.head()]
                                .inner_get_last_car_position(
                                    now,
                                    cars,
                                    queues,
                                    recursed_queues,
                                    None,
                                )
                                .unwrap();
                            assert_eq!(head, id);

                            let mut dist_away_from_this_queue = head_dist;
                            for on in &leader.last_steps {
                                if *on == self.id {
                                    break;
                                }
                                dist_away_from_this_queue += queues[on].geom_len;
                            }
                            // They might actually be out of the way, but laggy_head hasn't been
                            // updated yet.
                            if dist_away_from_this_queue
                                < leader.vehicle.length + FOLLOWING_DISTANCE
                            {
                                self.geom_len
                                    - (cars[&id].vehicle.length - dist_away_from_this_queue)
                                    - FOLLOWING_DISTANCE
                            } else {
                                self.geom_len
                            }
                        }
                    }
                    None => self.geom_len,
                },
            };

            // There's spillover and a car shouldn't have been able to enter yet.
            if bound < Distance::ZERO {
                if let Some(intermediate_results) = intermediate_results {
                    dump_cars(intermediate_results, cars, self.id, now);
                }
                panic!(
                    "Queue has spillover on {} at {} -- can't draw {}, bound is {}. Laggy head is \
                     {:?}. This is usually a geometry bug; check for duplicate roads going \
                     between the same intersections.",
                    self.id, now, id, bound, self.laggy_head
                );
            }

            let car = &cars[id];
            let front = match car.state {
                CarState::Queued { .. } => {
                    if car.router.last_step() {
                        car.router.get_end_dist().min(bound)
                    } else {
                        bound
                    }
                }
                CarState::WaitingToAdvance { .. } => {
                    assert_eq!(bound, self.geom_len);
                    self.geom_len
                }
                CarState::Crossing(ref time_int, ref dist_int) => {
                    // TODO Why percent_clamp_end? We process car updates in any order, so we might
                    // calculate this before moving this car from Crossing to another state.
                    dist_int.lerp(time_int.percent_clamp_end(now)).min(bound)
                }
                CarState::Unparking(front, _, _) => front,
                CarState::Parking(front, _, _) => front,
                CarState::IdlingAtStop(front, _) => front,
            };

            if let Some(ref mut intermediate_results) = intermediate_results {
                intermediate_results.push((*id, front));
            }
            previous = Some((*id, front));
        }
        // Enable to detect possible bugs, but save time otherwise
        if false {
            if let Some(intermediate_results) = intermediate_results {
                validate_positions(intermediate_results, cars, now, self.id)
            }
        }
        previous
    }

    pub fn get_idx_to_insert_car(
        &self,
        start_dist: Distance,
        vehicle_len: Distance,
        now: Time,
        cars: &FixedMap<CarID, Car>,
        queues: &HashMap<Traversable, Queue>,
    ) -> Option<usize> {
        if self.laggy_head.is_none() && self.cars.is_empty() {
            return Some(0);
        }

        let dists = self.get_car_positions(now, cars, queues);
        // TODO Binary search
        let idx = match dists.iter().position(|(_, dist)| start_dist >= *dist) {
            Some(i) => i,
            None => dists.len(),
        };

        // Nope, there's not actually room at the front right now.
        if self.laggy_head.is_some() && idx == 0 {
            return None;
        }

        // Are we too close to the leader?
        if idx != 0
            && dists[idx - 1].1 - cars[&dists[idx - 1].0].vehicle.length - FOLLOWING_DISTANCE
                < start_dist
        {
            return None;
        }
        // Or the follower?
        if idx != dists.len() && start_dist - vehicle_len - FOLLOWING_DISTANCE < dists[idx].1 {
            return None;
        }

        Some(idx)
    }

    /// If true, there's room and the car must actually start the turn (because the space is
    /// reserved).
    pub fn try_to_reserve_entry(&mut self, car: &Car, force_entry: bool) -> bool {
        // If lane is already filled, then always return false, even if forced.
        if self.reserved_length >= self.geom_len {
            return false;
        }

        // Sometimes a car + FOLLOWING_DISTANCE might be longer than the geom_len entirely. In that
        // case, it just means the car won't totally fit on the queue at once, which is fine.
        // Reserve the normal amount of space; the next car trying to enter will get rejected.
        // Also allow this don't-block-the-box prevention to be disabled.
        if self.room_for_car(car) || force_entry {
            self.reserved_length += car.vehicle.length + FOLLOWING_DISTANCE;
            return true;
        }
        false
    }

    pub fn room_for_car(&self, car: &Car) -> bool {
        self.reserved_length == Distance::ZERO
            || self.reserved_length + car.vehicle.length + FOLLOWING_DISTANCE < self.geom_len
    }

    pub fn free_reserved_space(&mut self, car: &Car) {
        self.reserved_length -= car.vehicle.length + FOLLOWING_DISTANCE;
        assert!(
            self.reserved_length >= Distance::ZERO,
            "invalid reserved length: {:?}, car: {:?}",
            self.reserved_length,
            car
        );
    }

    pub fn target_lane_penalty(&self) -> (usize, usize) {
        let mut num_vehicles = self.cars.len();
        if self.laggy_head.is_some() {
            num_vehicles += 1;
        }

        let bike_cost = if self.cars.iter().any(|c| c.1 == VehicleType::Bike)
            || self
                .laggy_head
                .map(|c| c.1 == VehicleType::Bike)
                .unwrap_or(false)
        {
            1
        } else {
            0
        };

        (num_vehicles, bike_cost)
    }
}

fn validate_positions(
    dists: &Vec<(CarID, Distance)>,
    cars: &FixedMap<CarID, Car>,
    now: Time,
    id: Traversable,
) {
    for pair in dists.windows(2) {
        if pair[0].1 - cars[&pair[0].0].vehicle.length - FOLLOWING_DISTANCE < pair[1].1 {
            dump_cars(&dists, cars, id, now);
            panic!(
                "get_car_positions wound up with bad positioning: {} then {}\n{:?}",
                pair[0].1, pair[1].1, dists
            );
        }
    }
}

fn dump_cars(
    dists: &Vec<(CarID, Distance)>,
    cars: &FixedMap<CarID, Car>,
    id: Traversable,
    now: Time,
) {
    println!("\nOn {} at {}...", id, now);
    for (id, dist) in dists {
        let car = &cars[id];
        println!("- {} @ {} (length {})", id, dist, car.vehicle.length);
        match car.state {
            CarState::Crossing(ref time_int, ref dist_int) => {
                println!(
                    "  Going {} .. {} during {} .. {}",
                    dist_int.start, dist_int.end, time_int.start, time_int.end
                );
            }
            CarState::Queued { .. } => {
                println!("  Queued currently");
            }
            CarState::WaitingToAdvance { .. } => {
                println!("  WaitingToAdvance currently");
            }
            CarState::Unparking(_, _, ref time_int) => {
                println!("  Unparking during {} .. {}", time_int.start, time_int.end);
            }
            CarState::Parking(_, _, ref time_int) => {
                println!("  Parking during {} .. {}", time_int.start, time_int.end);
            }
            CarState::IdlingAtStop(_, ref time_int) => {
                println!("  Idling during {} .. {}", time_int.start, time_int.end);
            }
        }
    }
    println!();
}